259 research outputs found

    The evolving definition of carcinogenic human papillomavirus

    Get PDF
    Thirteen human papillomavirus (HPV) genotypes have been judged to be carcinogenic or probably carcinogenic, and the cause of virtually all cervical cancer worldwide. Other HPV genotypes could possibly be involved. Although the inclusion of possibly carcinogenic HPV genotypes may hurt test specificity, it may indirectly increase the reassurance following a negative HPV test (i.e. the negative predictive value of an HPV test for cervical precancer and cancer). The future of cervical cancer screening in low-resource setting, however, may include once-in-a-lifetime, low-cost and rapid HPV testing. However, the tradeoff of more false positives for greater reassurance may not be acceptable if the local infrastructure cannot manage the screen positives. Now is the time for the community of scientists, doctors, and public health advocates to use the data presented at the 100th International Agency for Research on Cancer monograph meeting to rationally decide the target HPV genotypes for the next generation of HPV tests for use in high-resource and low-resource settings. The implications of including possibly HPV genotypes on HPV test performance, also for guidance on the use of these tests for cervical cancer prevention programs, are discussed

    Single-tube multiplex PCR using type-specific E6/E7 primers and capillary electrophoresis genotypes 21 human papillomaviruses in neoplasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human papillomavirus (HPV) <it>E6/E7 </it>type-specific oncogenes are required for cervical carcinogenesis. Current PCR protocols for genotyping high-risk HPV in cervical screening are not standardized and usually use consensus primers targeting HPV capsid genes, which are often deleted in neoplasia. PCR fragments are detected using specialized equipment and extra steps, including probe hybridization or primer extension. In published papers, analytical sensitivity is typically compared with a different protocol on the same sample set.</p> <p>A single-tube multiplex PCR containing type-specific primers was developed to target the <it>E6/E7 </it>genes of two low-risk and 19 high-risk genotypes (HPV6, 11 and 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 70, 73 and 82) and the resulting short fragments were directly genotyped by high-resolution fluorescence capillary electrophoresis.</p> <p>Results</p> <p>The method was validated using long oligonucleotide templates, plasmid clones and 207 clinical samples of DNA from liquid-based cytology, fresh and formalin-fixed specimens and FTA Microcards<sup>® </sup>imprinted with cut tumor surfaces, swabbed cervical cancers or ejected aspirates from nodal metastases of head and neck carcinomas. Between one and five long oligonucleotide targets per sample were detected without false calls. Each of the 21 genotypes was detected in the clinical sample set with up to five types simultaneously detected in individual specimens. All 101 significant cervical neoplasias (CIN 2 and above), except one adenocarcinoma, contained <it>E6/E7 </it>genes. The resulting genotype distribution accorded with the national pattern with HPV16 and 18 accounting for 69% of tumors. Rare HPV types 70 and 73 were present as the sole genotype in one carcinoma each. One cervical SCC contained DNA from HPV6 and 11 only. Six of twelve oropharyngeal cancer metastases and three neck metastases of unknown origin bore <it>E6/E7 </it>DNA; all but one were HPV16. One neck aspirate contained atypical squames with HPV26.</p> <p>Analytical sensitivity in dilute plasmid mixes was variable.</p> <p>Conclusions</p> <p>A primer-rich PCR readily detects the <it>E6/E7 </it>oncogenes of 21 HPV types in cellular and fixed tissue specimens. The method is straightforward, robust and reproducible and avoids post-PCR enzymatic and hybridization steps while detecting HPV with high clinical sensitivity in significant HPV-related neoplasia regardless of specimen type.</p

    Performance and Diagnostic Accuracy of a Urine-Based Human Papillomavirus Assay in a Referral Population

    Get PDF
    Cancer Research UK Programme grant C569/A16891 provided funding to J.M. Cuzick, supplemented by financial contributions and assay kits to J.M. Cuzick from Trovagene, Qiagen, BD, Abbott, Genera, Hologic and Oncohealth

    Differential cross sections and spin density matrix elements for the reaction gamma p -> p omega

    Full text link
    High-statistics differential cross sections and spin density matrix elements for the reaction gamma p -> p omega have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into cos(theta_CM) bins of width 0.1. These are the most precise and extensive omega photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements

    Paradoxes in carcinogenesis: New opportunities for research directions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevailing paradigm in cancer research is the somatic mutation theory that posits that cancer begins with a single mutation in a somatic cell followed by successive mutations. Much cancer research involves refining the somatic mutation theory with an ever increasing catalog of genetic changes. The problem is that such research may miss paradoxical aspects of carcinogenesis for which there is no likely explanation under the somatic mutation theory. These paradoxical aspects offer opportunities for new research directions that should not be ignored.</p> <p>Discussion</p> <p>Various paradoxes related to the somatic mutation theory of carcinogenesis are discussed: (1) the presence of large numbers of spatially distinct precancerous lesions at the onset of promotion, (2) the large number of genetic instabilities found in hyperplastic polyps not considered cancer, (3) spontaneous regression, (4) higher incidence of cancer in patients with xeroderma pigmentosa but not in patients with other comparable defects in DNA repair, (5) lower incidence of many cancers except leukemia and testicular cancer in patients with Down's syndrome, (6) cancer developing after normal tissue is transplanted to other parts of the body or next to stroma previously exposed to carcinogens, (7) the lack of tumors when epithelial cells exposed to a carcinogen were transplanted next to normal stroma, (8) the development of cancers when Millipore filters of various pore sizes were was inserted under the skin of rats, but only if the holes were sufficiently small. For the latter paradox, a microarray experiment is proposed to try to better understand the phenomena.</p> <p>Summary</p> <p>The famous physicist Niels Bohr said "How wonderful that we have met with a paradox. Now we have some hope of making progress." The same viewpoint should apply to cancer research. It is easy to ignore this piece of wisdom about the means to advance knowledge, but we do so at our peril.</p
    corecore