154 research outputs found

    Protective effect of leptin against ischemia-reperfusion injury in the rat small intestine

    Get PDF
    BACKGROUND: The small intestine is extremely sensitive to ischemia-reperfusion (I/R) injury and a range of microcirculatory disturbances which contribute to tissue damage. Previous studies have shown that leptin plays an important physiological role in the microvasculature. The aim of this study was to evaluate the protective effects of leptin in I/R ā€“ induced mucosal injury in the small intestine. METHODS: Forty rats were divided into 5 groups (n = 8). Group I was subjected to a sham operation. Following mesenteric ischemia in group II (control); physiologic saline 1 cm(3), in group III; leptin 100 Ī¼g/kg, and physiologic saline 1 cm(3), in group IV; N(G)-L-arginine methyl ester (L-NAME) 20 mg/kg, and physiologic saline 1 cm(3), in group V; leptin 100 Ī¼g/kg, L-NAME 20 mg/kg, and physiologic saline 1 cm(3 )were given intra-peritoneally. In these groups, an I/R procedure was performed by occlusion of the superior mesenteric artery for 45 min followed by 120 min reperfusion. After reperfusion, the small intestines were resected for malondialdehyde (MDA) and nitric oxide (NO) concentration and histopathologic properties. Mucosal lesions were scored between 0 and 5. Tissue MDA and NO concentration and histopathologic grades were compared statistically. RESULTS: Tissue MDA level significantly increased (P < 0.05), tissue NO level significantly decreased in group V animals, compared to group III animals respectively (P < 0.001). Histopathologically, intestinal injury significantly decreased in the leptin treated ischemic group. CONCLUSION: Leptin can be used safely in mesenteric occlusive diseases, since it induces NO formation and release in mesenteric vessels

    Enterocyte Shedding and Epithelial Lining Repair Following Ischemia of the Human Small Intestine Attenuate Inflammation

    Get PDF
    BACKGROUND: Recently, we observed that small-intestinal ischemia and reperfusion was found to entail a rapid loss of apoptotic and necrotic cells. This study was conducted to investigate whether the observed shedding of ischemically damaged epithelial cells affects IR induced inflammation in the human small gut. METHODS AND FINDINGS: Using a newly developed IR model of the human small intestine, the inflammatory response was studied on cellular, protein and mRNA level. Thirty patients were consecutively included. Part of the jejunum was subjected to 30 minutes of ischemia and variable reperfusion periods (mean reperfusion time 120 (+/-11) minutes). Ethical approval and informed consent were obtained. Increased plasma intestinal fatty acid binding protein (I-FABP) levels indicated loss in epithelial cell integrity in response to ischemia and reperfusion (p<0.001 vs healthy). HIF-1alpha gene expression doubled (p = 0.02) and C3 gene expression increased 4-fold (p = 0.01) over the course of IR. Gut barrier failure, assessed as LPS concentration in small bowel venous effluent blood, was not observed (p = 0.18). Additionally, mRNA expression of HO-1, IL-6, IL-8 did not alter. No increased expression of endothelial adhesion molecules, TNFalpha release, increased numbers of inflammatory cells (p = 0.71) or complement activation, assessed as activated C3 (p = 0.14), were detected in the reperfused tissue. CONCLUSIONS: In the human small intestine, thirty minutes of ischemia followed by up to 4 hours of reperfusion, does not seem to lead to an explicit inflammatory response. This may be explained by a unique mechanism of shedding of damaged enterocytes, reported for the first time by our group

    Mitochondrial dysfunction and biogenesis: do ICU patients die from mitochondrial failure?

    Get PDF
    Mitochondrial functions include production of energy, activation of programmed cell death, and a number of cell specific tasks, e.g., cell signaling, control of Ca2+ metabolism, and synthesis of a number of important biomolecules. As proper mitochondrial function is critical for normal performance and survival of cells, mitochondrial dysfunction often leads to pathological conditions resulting in various human diseases. Recently mitochondrial dysfunction has been linked to multiple organ failure (MOF) often leading to the death of critical care patients. However, there are two main reasons why this insight did not generate an adequate resonance in clinical settings. First, most data regarding mitochondrial dysfunction in organs susceptible to failure in critical care diseases (liver, kidney, heart, lung, intestine, brain) were collected using animal models. Second, there is no clear therapeutic strategy how acquired mitochondrial dysfunction can be improved. Only the benefit of such therapies will confirm the critical role of mitochondrial dysfunction in clinical settings. Here we summarized data on mitochondrial dysfunction obtained in diverse experimental systems, which are related to conditions seen in intensive care unit (ICU) patients. Particular attention is given to mechanisms that cause cell death and organ dysfunction and to prospective therapeutic strategies, directed to recover mitochondrial function. Collectively the data discussed in this review suggest that appropriate diagnosis and specific treatment of mitochondrial dysfunction in ICU patients may significantly improve the clinical outcome
    • ā€¦
    corecore