13 research outputs found
Interspecific introgression mediates adaptation to whole genome duplication
Adaptive gene flow is a consequential phenomenon across all kingdoms. While recognition is increasing, examples lack of bidirectional gene flow mediating adaptations at loci that manage core processes. We previously discovered concerted molecular changes among interacting members of meiotic machinery controlling crossover number upon adaptation to whole genome duplication (WGD) in Arabidopsis arenosa. Here we conduct a population genomic study to test the hypothesis that adaptation to WGD has been mediated by adaptive gene flow between A. arenosa and A. lyrata. We find that A. lyrata underwent WGD more recently than A. arenosa, suggesting that pre-adapted alleles have rescued nascent A. lyrata, but we also detect gene flow in the opposite direction at functionally interacting loci under the most extreme levels of selection. These data indicate that bidirectional gene flow allowed for survival after WGD and that the merger of these species is greater than the sum of their parts
Spectroscopic detection of halogen bonding resolves dye regeneration in the dye-sensitized solar cell
Dye-sensitized solar cells rely on molecular dyes to absorb light and conduct electrons. Parlane et al. show that weak forces such as hydrogen bonding can be responsible for the dye regeneration step of solar cells and have an impact on the photovoltage and the efficiency