35 research outputs found

    Specificity and heregulin regulation of Ebp1 (ErbB3 binding protein 1) mediated repression of androgen receptor signalling

    Get PDF
    Although ErbB receptors have been implicated in the progression of prostate cancer, little is known about proteins that may mediate their interactions with the androgen receptor (AR). Ebp1, a protein cloned via its association with the ErbB3 receptor, binds the AR and inhibits androgen-regulated transactivation of wild-type AR in COS cells. As the complement of coregulators in different cells are important for AR activity, we determined the effect of Ebp1 on AR function in prostate cancer cell lines. In addition, we examined the regulation of Ebp1 function by the ErbB3/4 ligand heregulin (HRG). In this study, we demonstrate, using several natural AR-regulated promoters, that Ebp1 repressed transcriptional activation of wild-type AR in prostate cancer cell lines. Downregulation of Ebp1 expression in LNCaP cells using siRNA resulted in activation of AR in the absence of androgen. Ebp1 associated with ErbB3 in LNCaP cells in the absence of HRG, but HRG induced the dissociation of Ebp1 from ErbB3. In contrast, HRG treatment enhanced both the association of Ebp1 with AR and also the ability of Ebp1 to repress AR transactivation. These studies suggest that Ebp1 is an AR corepressor whose biological activity can be regulated by the ErbB3 ligand, HRG

    LNCaP Atlas: Gene expression associated with in vivo progression to castration-recurrent prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is no cure for castration-recurrent prostate cancer (CRPC) and the mechanisms underlying this stage of the disease are unknown.</p> <p>Methods</p> <p>We analyzed the transcriptome of human LNCaP prostate cancer cells as they progress to CRPC <it>in vivo </it>using replicate LongSAGE libraries. We refer to these libraries as the LNCaP atlas and compared these gene expression profiles with current suggested models of CRPC.</p> <p>Results</p> <p>Three million tags were sequenced using <it>in vivo </it>samples at various stages of hormonal progression to reveal 96 novel genes differentially expressed in CRPC. Thirty-one genes encode proteins that are either secreted or are located at the plasma membrane, 21 genes changed levels of expression in response to androgen, and 8 genes have enriched expression in the prostate. Expression of 26, 6, 12, and 15 genes have previously been linked to prostate cancer, Gleason grade, progression, and metastasis, respectively. Expression profiles of genes in CRPC support a role for the transcriptional activity of the androgen receptor (<it>CCNH, CUEDC2, FLNA, PSMA7</it>), steroid synthesis and metabolism (<it>DHCR24, DHRS7</it>, <it>ELOVL5, HSD17B4</it>, <it>OPRK1</it>), neuroendocrine (<it>ENO2, MAOA, OPRK1, S100A10, TRPM8</it>), and proliferation (<it>GAS5</it>, <it>GNB2L1</it>, <it>MT-ND3</it>, <it>NKX3-1</it>, <it>PCGEM1</it>, <it>PTGFR</it>, <it>STEAP1</it>, <it>TMEM30A</it>), but neither supported nor discounted a role for cell survival genes.</p> <p>Conclusions</p> <p>The <it>in vivo </it>gene expression atlas for LNCaP was sequenced and support a role for the androgen receptor in CRPC.</p

    Systemic administration of quality- and quantity-controlled PBMNCs reduces bisphosphonate-related osteonecrosis of jaw-like lesions in mice

    Get PDF
    Background: Definitive treatment strategies for bisphosphonate-related osteonecrosis of the jaw (BRONJ) have not been developed. Cell-based therapy is an attractive treatment method for intractable diseases in the medical and dental fields;however, approval has been challenging in dentistry. Recently, we developed quality- A nd quantity (QQ)-controlled peripheral blood mononuclear cells (PBMNCs) that have anti-inflammatory and pro-angiogenesis effects. The aim of this study was to investigate the effects of QQ-controlled PBMNC transplantation on BRONJ-like lesions in mice. Methods: To create high-prevalence BRONJ-like lesions, cyclophosphamide (CY) and zoledronate (ZA) were used with tooth extraction. Drug treatment was performed for 5 weeks. QQ-controlled PBMNC transplantation was performed immediately following tooth extraction of both maxillary first molars at 3 weeks after drug administration. Mice were euthanized at 2 weeks post-extraction. Histomorphometric and immunohistochemical analyses, microcomputed tomography assessment, and quantitative polymerase chain reaction evaluation were conducted using maxillae and long bones. Results: ZA effects on long bones were noted, regardless of CY.Severely inhibited osseous and soft tissue wound healing of tooth extraction sockets was induced by CY/ZA combination therapy, which was diagnosed as BRONJ-like lesions. QQ-controlled PBMNC transplantation reduced BRONJ-like lesions by improving soft tissue healing with increased M1 and M2 macrophages and enhanced neovascularization in the connective tissue of tooth extraction sockets. QQ-controlled PBMNC transplantation also reduced inflammation by decreasing polymorphonuclear cells and TNF-α expression in the tooth extraction sockets. Additionally, QQ-controlled PBMNC transplantation partially improved osseous healing of tooth extraction sockets. Interestingly, only 20,000 QQ-controlled PBMNCs per mouse induced these transplantation effects. QQ-controlled PBMNC transplantation did not affect the systemic microenvironment. Conclusions: Our findings suggest that transplantation of a small amount of QQ-controlled PBMNCs may become novel therapeutic or prevention strategies for BRONJ without any adverse side effects
    corecore