22 research outputs found

    Effect of hemicellulose liquid phase on the enzymatic hydrolysis of autohydrolyzed Eucalyptus globulus wood

    Get PDF
    In this work, Eucalyptus globulus wood was pretreated under non-isothermal autohydrolysis process at 210, 220, and 230 °C, obtaining a pretreated solid with high cellulose content and a hemicellulosic liquid phase (HLP) containing mainly xylose, acetic acid, furfural, xylooligosaccharides, and phenolic compounds. The maximum concentration of xylooligosaccharides (8.97 g/L) and phenolic compounds (2.66 g/L) was obtained at 210 and 230 °C, respectively. To evaluate the effect of HLP addition on the enzymatic hydrolysis using unwashed pretreated solid as substrate, different proportions of HLP were studied. Also, in order to use the whole slurry on enzymatic hydrolysis, the supplementation of xylanases was evaluated. Glucose concentration of 107.49 g/L (corresponding to 74.65 % of conversion) was obtained using pretreated solid at 220 °C liquid/solid ratio (LSR) of 4 g/g and enzyme solid ratio (ESR) of 25 FPU/gwithout the addition of HLP. Thus, it was shown that the unwashed pretreated solids are susceptible to enzymatic hydrolysis contributing to reduce operational cost (water consumption). Additionally, the influence of the inhibitory compounds in the HLP was shown to affect the enzymatic hydrolysis. Results indicated that 82.52 g/L of glucose (59.37 % of conversion) was obtained, using 100 % of HLP at LSR of 4 g/g and ESR of 16 FPU/g at 210 °C of pretreated solid. However, a positive effect was shown on the enzymatic hydrolysis when the xylanases were added using 100 % of HLP, increasing to 35 and 27 % in the glucose production with respect to whole slurry without addition of xylanases.The authors A. Romani and F. B. Pereira thank to the Portuguese Foundation for Science and Technology (FCT, Portugal) for their fellowships (grant number, SFRH/BPD/77995/2011 and SFRH/BD/64776/2009, respectively)

    Screening of winery and olive mill wastes for lignocellulolytic enzyme production from Aspergillus species by solid-state fermentation

    Get PDF
    Wastes from olive oil and wine industries (as exhausted grape marc, vineshoot trimmings, two-phase olive mill waste, vinasses, and olive mill wastewater) were evaluated for lignocellulolytic enzyme production (as endocellulases, endoxylanases, and feruloyl esterases) by solid-state fermentation (SSF) with Aspergillus niger, Aspergillus ibericus, and Aspergillus uvarum. To study the effect of different solid medium composition and time in enzyme production, a PlackettBurman experimental design was used. Variables that had a higher positive effect in lignocellulolytic enzyme production were urea, time, and exhausted grape marc. The maximum values of enzymatic activity per unit of substrate dry mass were found with A. niger for feruloyl esterase. Enzymatic extracts from SSF with A. niger achieved maximum feruloyl esterase activity (89.53 U/g) and endoxylanase activity (3.06 U/g) and with A. uvarum for endocellulase activity (6.77 U/g). The enzyme cocktails obtained in the SSF extracts may have applications in biorefinery industries.Jose Manuel Salgado is grateful for the postdoctoral fellowship (EX-2010-0402) of the Education Ministry of Spanish Government. Luis Abrunhosa was supported by the grant SFRH/BPD/43922/2008 from Fundacao para a Ciencia e Tecnologia-FCT, Portugal

    Enzymatic hydrolysis of sorghum straw using native cellulase produced by T. reesei NCIM 992 under solid state fermentation using rice straw

    Get PDF
    Cellulose is a major constituent of renewable lignocellulosic waste available in large quantities and is considered the most important reservoir of carbon for the production of glucose, for alternative fuel and as a chemical feedstock. Over the past decade, the emphasis has been on the enzymatic hydrolysis of cellulose to glucose and the efficiency of which depends on source of cellulosic substrate, its composition, structure, pretreatment process, and reactor design. In the present study, efforts were made to produce cellulase enzyme using rice straw. The produced enzyme was used for the hydrolysis of selected lignocellulosic substrate, i.e., sorghum straw. When rice straw was used as a substrate for cellulase production under solid state fermentation, the highest enzyme activity obtained was 30.7 FPU/gds, using T. reesei NCIM 992. 25 FPU/g of cellulase was added to differently treated (native, alkali treated, alkali treated followed by 3% acid treated and alkali treated followed by 3 and 5% acid treated) sorghum straw and hydrolysis was carried out at 50 °C for 60 h. 42.5% hydrolysis was obtained after 36 h of incubation. Optimization of enzyme loading, substrate concentration, temperature, time and buffer yielded a maximum of 546.00 ± 0.55 mg/g sugars (54.60 ± 0.44 g/l) with an improved hydrolysis efficiency of 70 ± 0.45%. The enzymatic hydrolyzate can be used for fermentation of ethanol by yeasts

    Wheat Straw Degradation by Trametes gibbosa: The Effect of Calcium Ions

    No full text
    Wheat straw is the major crop residue in Europe which makes it the most promising material for bioconversion. However, only 3% of annual production is used directly while the rest is considered as waste. A key step in processing of lignocellulosics is delignification by fungi and the presence of calcium can be of a great importance as it can modulate ligninolytic enzymes activities. Trametes gibbosa BEOFB 310 was used for solid-state fermentation of wheat straw in the presence of calcium in different concentrations. Samples were extracted after 19days of fermentation and activities of Mn-oxidizing peroxidases and laccase were determined spectrophotometrically. Quantitative procedures were used to determine contents of hemicelluloses, cellulose, and lignin. Calcium induced activity of Mn-dependent peroxidase to a concentration of 5.0mM (7185.2 +/- 791.4 UL-1), which was threefold higher than in the control. Lignocellulose loss in wheat straw was stimulated by calcium addition and the maximum delignification was detected at concentration of 5.0mM (52.9 +/- 0.9%). Delignification was positively correlated to activity of Mn-dependent peroxidase. This study showed that wheat straw supplementation with calcium can significantly improve solid-state fermentation by increasing Trametes gibbosa Mn-dependent peroxidase activity and augmenting lignin degradation

    Induction of wheat straw delignification by Trametes species

    No full text
    Wheat straw is the major crop residue in European countries which makes it the most promising material for bioconversion into biofuels. However, cellulose and hemicellulose are protected with lignin, so delignification is an inevitable phase in lignocellulose processing. The organisms predominantly responsible for its degradation are white-rot fungi and among them Trametes species represent promising degraders due to a well-developed ligninolytic enzyme system. Although numerous studies have confirmed that low molecular weight compounds can induce the production and activity of ligninolytic enzymes it is not clear how this reflects on the extent of delignification. The aim of the study was to assess the capacity of p-anisidine and veratryl alcohol to induce the production and activity of Mn-oxidizing peroxidases and laccases, and wheat straw delignification by six Trametes species. Significant inter- and intraspecific variations in activity and features of these enzymes were found, as well as differences in the potential of lignocellulose degradation in the presence or absence of inducers. Differences in the catalytic properties of synthesized enzyme isoforms strongly affected lignin degradation. Apart from enhanced lignin degradation, the addition of p-anisidine could significantly improve the selectivity of wheat straw ligninolysis, which was especially evident for T. hirsuta strains

    Loss of function of the carbon catabolite repressor CreA leads to low but inducer‐independent expression from the feruloyl esterase B promoter in Aspergillus niger

    Get PDF
    OBJECTIVE: With the aim to decipher the mechanisms involved in the transcriptional regulation of feruloyl esterase encoded by faeB, a genetic screen was performed to isolate A. niger mutants displaying inducer-independent expression from the faeB promoter. RESULT: PfaeB-amdS and PfaeB-lux dual reporter strains were constructed and used to isolate trans-acting mutants in which the expression of both reporters was increased, based on the ability to grow on acetamide plates and higher luciferase activity, respectively. The genetic screen on the non-inducing carbon source D-fructose yielded in total 111 trans-acting mutants. The genome of one of the mutants was sequenced and revealed several SNPs, including a point mutation in the creA gene encoding a transcription factor known to be involved in carbon catabolite repression. Subsequently, all mutants were analyzed for defects in carbon catabolite repression by determining sensitivity towards allyl alcohol. All except four of the 111 mutants were sensitive to allyl alcohol, indicating that the vast majority of the mutants are defective in carbon catabolite repression. The creA gene of 32 allyl alcohol sensitive mutants was sequenced and 27 of them indeed contained a mutation in the creA gene. Targeted deletion of creA in the reporter strain confirmed that the loss of CreA results in constitutive expression from the faeB promoter. CONCLUSION: Loss of function of CreA leads to low but inducer-independent expression from the faeB promoter in A. niger. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10529-021-03104-2
    corecore