4 research outputs found

    Predicting the Antigenic Structure of the Pandemic (H1N1) 2009 Influenza Virus Hemagglutinin

    Get PDF
    The pandemic influenza virus (2009 H1N1) was recently introduced into the human population. The hemagglutinin (HA) gene of 2009 H1N1 is derived from β€œclassical swine H1N1” virus, which likely shares a common ancestor with the human H1N1 virus that caused the pandemic in 1918, whose descendant viruses are still circulating in the human population with highly altered antigenicity of HA. However, information on the structural basis to compare the HA antigenicity among 2009 H1N1, the 1918 pandemic, and seasonal human H1N1 viruses has been lacking. By homology modeling of the HA structure, here we show that HAs of 2009 H1N1 and the 1918 pandemic virus share a significant number of amino acid residues in known antigenic sites, suggesting the existence of common epitopes for neutralizing antibodies cross-reactive to both HAs. It was noted that the early human H1N1 viruses isolated in the 1930s–1940s still harbored some of the original epitopes that are also found in 2009 H1N1. Interestingly, while 2009 H1N1 HA lacks the multiple N-glycosylations that have been found to be associated with an antigenic change of the human H1N1 virus during the early epidemic of this virus, 2009 H1N1 HA still retains unique three-codon motifs, some of which became N-glycosylation sites via a single nucleotide mutation in the human H1N1 virus. We thus hypothesize that the 2009 H1N1 HA antigenic sites involving the conserved amino acids will soon be targeted by antibody-mediated selection pressure in humans. Indeed, amino acid substitutions predicted here are occurring in the recent 2009 H1N1 variants. The present study suggests that antibodies elicited by natural infection with the 1918 pandemic or its early descendant viruses play a role in specific immunity against 2009 H1N1, and provides an insight into future likely antigenic changes in the evolutionary process of 2009 H1N1 in the human population

    Evolutionary Trends of A(H1N1) Influenza Virus Hemagglutinin Since 1918

    Get PDF
    The Pandemic (H1N1) 2009 is spreading to numerous countries and causing many human deaths. Although the symptoms in humans are mild at present, fears are that further mutations in the virus could lead to a potentially more dangerous outbreak in subsequent months. As the primary immunity-eliciting antigen, hemagglutinin (HA) is the major agent for host-driven antigenic drift in A(H3N2) virus. However, whether and how the evolution of HA is influenced by existing immunity is poorly understood for A(H1N1). Here, by analyzing hundreds of A(H1N1) HA sequences since 1918, we show the first evidence that host selections are indeed present in A(H1N1) HAs. Among a subgroup of human A(H1N1) HAs between 1918∼2008, we found strong diversifying (positive) selection at HA1 156 and 190. We also analyzed the evolutionary trends at HA1 190 and 225 that are critical determinants for receptor-binding specificity of A(H1N1) HA. Different A(H1N1) viruses appeared to favor one of these two sites in host-driven antigenic drift: epidemic A(H1N1) HAs favor HA1 190 while the 1918 pandemic and swine HAs favor HA1 225. Thus, our results highlight the urgency to understand the interplay between antigenic drift and receptor binding in HA evolution, and provide molecular signatures for monitoring future antigenically drifted 2009 pandemic and seasonal A(H1N1) influenza viruses
    corecore