272 research outputs found

    Algorithm for identifying and separating beats from arterial pulse records

    Get PDF
    BACKGROUND: This project was designed as an epidemiological aid-selecting tool for a small country health center with the general objective of screening out possible coronary patients. Peripheral artery function can be non-invasively evaluated by impedance plethysmography. Changes in these vessels appear as good predictors of future coronary behavior. Impedance plethysmography detects volume variations after simple occlusive maneuvers that may show indicative modifications in arterial/venous responses. Averaging of a series of pulses is needed and this, in turn, requires proper determination of the beginning and end of each beat. Thus, the objective here is to describe an algorithm to identify and separate out beats from a plethysmographic record. A secondary objective was to compare the output given by human operators against the algorithm. METHODS: The identification algorithm detected the beat's onset and end on the basis of the maximum rising phase, the choice of possible ventricular systolic starting points considering cardiac frequency, and the adjustment of some tolerance values to optimize the behavior. Out of 800 patients in the study, 40 occlusive records (supradiastolic- subsystolic) were randomly selected without any preliminary diagnosis. Radial impedance plethysmographic pulse and standard ECG were recorded digitizing and storing the data. Cardiac frequency was estimated with the Power Density Function and, thereafter, the signal was derived twice, followed by binarization of the first derivative and rectification of the second derivative. The product of the two latter results led to a weighing signal from which the cycles' onsets and ends were established. Weighed and frequency filters are needed along with the pre-establishment of their respective tolerances. Out of the 40 records, 30 seconds strands were randomly chosen to be analyzed by the algorithm and by two operators. Sensitivity and accuracy were calculated by means of the true/false and positive/negative criteria. Synchronization ability was measured through the coefficient of variation and the median value of correlation for each patient. These parameters were assessed by means of Friedman's ANOVA and Kendall Concordance test. RESULTS: Sensitivity was 97% and 91% for the two operators, respectively, while accuracy was cero for both of them. The synchronism variability analysis was significant (p < 0.01) for the two statistics, showing that the algorithm produced the best result. CONCLUSION: The proposed algorithm showed good performance as expressed by its high sensitivity. The correlation analysis demonstrated that, from the synchronism point of view, the algorithm performed the best detection. Patients with marked arrhythmic processes are not good candidates for this kind of analysis. At most, they would be singled out by the algorithm and, thereafter, to be checked by an operator

    Oestradiol-17β plasma concentrations after intramuscular injection of oestradiol benzoate or oestradiol cypionate in llamas (Lama glama)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Llamas (<it>Lama glama</it>) are induced ovulators and the process of ovulation depends on dominant follicular size. In addition, a close relationship between behavioural estrus and ovulation is not registered in llamas. Therefore, the exogenous control of follicular development with hormones aims to predict the optimal time to mate. Oestradiol-17β (E<sub>2</sub>) and its esters are currently used in domestic species, including camelids, in synchronization treatments. But, in llamas, there is no reports regarding the appropriate dosages to be used and most protocols have been designed by extrapolation from those recommended for other ruminants. The aim of the present study was to characterize plasma E<sub>2 </sub>concentrations in intact female llamas following a single intramuscular (i.m.) injection of two oestradiol esters: oestradiol benzoate (EB) and oestradiol cypionate (ECP).</p> <p>Methods</p> <p>Twelve non pregnant and non lactating sexually mature llamas were i.m. injected on day 0 with 2.5 mg of EB (EB group, n = 6) or ECP (ECP group, n = 6). Blood samples were collected immediately before injection, at 1, 6, 12, 24 h after treatment and then daily until day 14 post injection. Changes in hormone concentrations with time were analyzed in each group by analysis of variance (ANOVA) using a repeated measures (within-SS) design. Plasma E<sub>2 </sub>concentrations and area under the concentration-time curve (AUC) values were compared between groups by ANOVA. In all cases a Least-Significant Difference test (LSD) was used to determine differences between means. Hormonal and AUC data are expressed as mean ± S.E.M.</p> <p>Results</p> <p>Peak plasma E<sub>2 </sub>concentrations were achieved earlier and were higher in EB group than in ECP group. Thereafter, E<sub>2 </sub>returned to physiological concentrations earlier in EB group (day 5) than in ECP group (day 9). Although plasma E<sub>2 </sub>profiles differed over time among groups there were no differences between them on AUC values.</p> <p>Conclusions</p> <p>The i.m. injection of a single dose of both oestradiol esters resulted in plasma E<sub>2 </sub>concentrations exceeding physiological values for a variable period. Moreover, the plasma E<sub>2 </sub>profiles observed depended on the derivative of oestradiol administered. This basic information becomes relevant at defining treatment protocols including oestrogens in llamas.</p

    Mouse Cofactor of BRCA1 (Cobra1) Is Required for Early Embryogenesis

    Get PDF
    Negative elongation factor (NELF) is a four-subunit protein complex conserved from Drosophila to humans. In vitro biochemical and tissue culture-based studies have demonstrated an important role of NELF in controlling RNA polymerase II (Pol II) pausing in transcription. However, the physiological significance of NELF function is not clear due to the lack of any genetic systems for studying NELF.Here we show that disruption of the mouse B subunit of NELF (NELF-B), also known as cofactor of BRCA1 (Cobra1), causes inner cell mass (ICM) deficiency and embryonic lethality at the time of implantation. Consistent with the phenotype of the Cobra1 knockout (KO) embryos, knockdown of Cobra1 in mouse embryonic stem cells (ESCs) reduces the efficiency of colony formation and increases spontaneous differentiation. Cobra1-depleted ESCs maintain normal levels of Oct4, Nanog, and Sox2, master regulators of pluripotency in ESCs. However, knockdown of Cobra1 leads to precocious expression of developmental regulators including lymphoid enhancer-binding factor 1 (Lef1). Chromatin immunoprecipitation (ChIP) indicates that Cobra1 binds to the Lef1 promoter and modulates the abundance of promoter-bound RNA polymerase.Cobra1 is essential for early embryogenesis. Our findings also indicate that Cobra1 helps maintain the undifferentiated state of mESCs by preventing unscheduled expression of developmental genes

    Haplotype differences for copy number variants in the 22q11.23 region among human populations: a pigmentation-based model for selective pressure.

    Get PDF
    Two gene clusters are tightly linked in a narrow region of chromosome 22q11.23: the macrophage migration inhibitory factor (MIF) gene family and the glutathione S-transferase theta class. Within 120 kb in this region, two 30-kb deletions reach high frequencies in human populations. This gives rise to four haplotypic arrangements, which modulate the number of genes in both families. The variable patterns of linkage disequilibrium (LD) between these copy number variants (CNVs) in diverse human populations remain poorly understood. We analyzed 2469 individuals belonging to 27 human populations with different ethnic origins. Then we correlated the genetic variability of 22q11.23 CNVs with environmental variables. We confirmed an increasing strength of LD from Africa to Asia and to Europe. Further, we highlighted strongly significant correlations between the frequency of one of the haplotypes and pigmentation-related variables: skin color (R2=0.675, P<0.001), distance from the equator (R2=0.454, P<0.001), UVA radiation (R2=0.439, P<0.001), and UVB radiation (R2=0.313, P=0.002). The fact that all MIF-related genes are retained on this haplotype and the evidences gleaned from experimental systems seem to agree with the role of MIF-related genes in melanogenesis. As such, we propose a model that explains the geographic and ethnic distribution of 22q11.23 CNVs among human populations, assuming that MIF-related gene dosage could be associated with adaptation to low UV radiatio

    The Blood Pressure "Uncertainty Range" – a pragmatic approach to overcome current diagnostic uncertainties (II)

    Get PDF
    A tremendous amount of scientific evidence regarding the physiology and physiopathology of high blood pressure combined with a sophisticated therapeutic arsenal is at the disposal of the medical community to counteract the overall public health burden of hypertension. Ample evidence has also been gathered from a multitude of large-scale randomized trials indicating the beneficial effects of current treatment strategies in terms of reduced hypertension-related morbidity and mortality. In spite of these impressive advances and, deeply disappointingly from a public health perspective, the real picture of hypertension management is overshadowed by widespread diagnostic inaccuracies (underdiagnosis, overdiagnosis) as well as by treatment failures generated by undertreatment, overtreatment, and misuse of medications. The scientific, medical and patient communities as well as decision-makers worldwide are striving for greatest possible health gains from available resources. A seemingly well-crystallised reasoning is that comprehensive strategic approaches must not only target hypertension as a pathological entity, but rather, take into account the wider environment in which hypertension is a major risk factor for cardiovascular disease carrying a great deal of our inheritance, and its interplay in the constellation of other, well-known, modifiable risk factors, i.e., attention is to be switched from one's "blood pressure level" to one's absolute cardiovascular risk and its determinants. Likewise, a risk/benefit assessment in each individual case is required in order to achieve best possible results. Nevertheless, it is of paramount importance to insure generalizability of ABPM use in clinical practice with the aim of improving the accuracy of a first diagnosis for both individual treatment and clinical research purposes. Widespread adoption of the method requires quick adjustment of current guidelines, development of appropriate technology infrastructure and training of staff (i.e., education, decision support, and information systems for practitioners and patients). Progress can be achieved in a few years, or in the next 25 years

    Candida albicans Infection of Caenorhabditis elegans Induces Antifungal Immune Defenses

    Get PDF
    Candida albicans yeast cells are found in the intestine of most humans, yet this opportunist can invade host tissues and cause life-threatening infections in susceptible individuals. To better understand the host factors that underlie susceptibility to candidiasis, we developed a new model to study antifungal innate immunity. We demonstrate that the yeast form of C. albicans establishes an intestinal infection in Caenorhabditis elegans, whereas heat-killed yeast are avirulent. Genome-wide, transcription-profiling analysis of C. elegans infected with C. albicans yeast showed that exposure to C. albicans stimulated a rapid host response involving 313 genes (124 upregulated and 189 downregulated, ∼1.6% of the genome) many of which encode antimicrobial, secreted or detoxification proteins. Interestingly, the host genes affected by C. albicans exposure overlapped only to a small extent with the distinct transcriptional responses to the pathogenic bacteria Pseudomonas aeruginosa or Staphylococcus aureus, indicating that there is a high degree of immune specificity toward different bacterial species and C. albicans. Furthermore, genes induced by P. aeruginosa and S. aureus were strongly over-represented among the genes downregulated during C. albicans infection, suggesting that in response to fungal pathogens, nematodes selectively repress the transcription of antibacterial immune effectors. A similar phenomenon is well known in the plant immune response, but has not been described previously in metazoans. Finally, 56% of the genes induced by live C. albicans were also upregulated by heat-killed yeast. These data suggest that a large part of the transcriptional response to C. albicans is mediated through “pattern recognition,” an ancient immune surveillance mechanism able to detect conserved microbial molecules (so-called pathogen-associated molecular patterns or PAMPs). This study provides new information on the evolution and regulation of the innate immune response to divergent pathogens and demonstrates that nematodes selectively mount specific antifungal defenses at the expense of antibacterial responses

    Serotonergic chemosensory neurons modify the <i>C. elegans</i> immune response by regulating G-protein signaling in epithelial cells

    Get PDF
    The nervous and immune systems influence each other, allowing animals to rapidly protect themselves from changes in their internal and external environment. However, the complex nature of these systems in mammals makes it difficult to determine how neuronal signaling influences the immune response. Here we show that serotonin, synthesized in Caenorhabditis elegans chemosensory neurons, modulates the immune response. Serotonin released from these cells acts, directly or indirectly, to regulate G-protein signaling in epithelial cells. Signaling in these cells is required for the immune response to infection by the natural pathogen Microbacterium nematophilum. Here we show that serotonin signaling suppresses the innate immune response and limits the rate of pathogen clearance. We show that C. elegans uses classical neurotransmitters to alter the immune response. Serotonin released from sensory neurons may function to modify the immune system in response to changes in the animal's external environment such as the availability, or quality, of food

    Multi-Parametric Analysis and Modeling of Relationships between Mitochondrial Morphology and Apoptosis

    Get PDF
    Mitochondria exist as a network of interconnected organelles undergoing constant fission and fusion. Current approaches to study mitochondrial morphology are limited by low data sampling coupled with manual identification and classification of complex morphological phenotypes. Here we propose an integrated mechanistic and data-driven modeling approach to analyze heterogeneous, quantified datasets and infer relations between mitochondrial morphology and apoptotic events. We initially performed high-content, multi-parametric measurements of mitochondrial morphological, apoptotic, and energetic states by high-resolution imaging of human breast carcinoma MCF-7 cells. Subsequently, decision tree-based analysis was used to automatically classify networked, fragmented, and swollen mitochondrial subpopulations, at the single-cell level and within cell populations. Our results revealed subtle but significant differences in morphology class distributions in response to various apoptotic stimuli. Furthermore, key mitochondrial functional parameters including mitochondrial membrane potential and Bax activation, were measured under matched conditions. Data-driven fuzzy logic modeling was used to explore the non-linear relationships between mitochondrial morphology and apoptotic signaling, combining morphological and functional data as a single model. Modeling results are in accordance with previous studies, where Bax regulates mitochondrial fragmentation, and mitochondrial morphology influences mitochondrial membrane potential. In summary, we established and validated a platform for mitochondrial morphological and functional analysis that can be readily extended with additional datasets. We further discuss the benefits of a flexible systematic approach for elucidating specific and general relationships between mitochondrial morphology and apoptosis
    corecore