8 research outputs found

    Doubly Uniparental Inheritance of Mitochondria As a Model System for Studying Germ Line Formation

    Get PDF
    BACKGROUND: Doubly Uniparental Inheritance (DUI) of mitochondria occurs when both mothers and fathers are capable of transmitting mitochondria to their offspring, in contrast to the typical Strictly Maternal Inheritance (SMI). DUI was found in some bivalve molluscs, in which two mitochondrial genomes are inherited, one through eggs, the other through sperm. During male embryo development, spermatozoon mitochondria aggregate in proximity of the first cleavage furrow and end up in the primordial germ cells, while they are dispersed in female embryos. METHODOLOGY/PRINCIPAL FINDINGS: We used MitoTracker, microtubule staining and transmission electron microscopy to examine the mechanisms of this unusual distribution of sperm mitochondria in the DUI species Ruditapes philippinarum. Our results suggest that in male embryos the midbody deriving from the mitotic spindle of the first division concurs in positioning the aggregate of sperm mitochondria. Furthermore, an immunocytochemical analysis showed that the germ line determinant Vasa segregates close to the first cleavage furrow. CONCLUSIONS/SIGNIFICANCE: In DUI male embryos, spermatozoon mitochondria aggregate in a stable area on the animal-vegetal axis: in organisms with spiral segmentation this zone is not involved in cleavage, so the aggregation is maintained. Moreover, sperm mitochondria reach the same embryonic area in which also germ plasm is transferred. In 2-blastomere embryos, the segregation of sperm mitochondria in the same region with Vasa suggests their contribution in male germ line formation. In DUI male embryos, M-type mitochondria must be recognized by egg factors to be actively transferred in the germ line, where they become dominant replacing the Balbiani body mitochondria. The typical features of germ line assembly point to a common biological mechanism shared by DUI and SMI organisms. Although the molecular dynamics of the segregation of sperm mitochondria in DUI species are unknown, they could be a variation of the mechanism regulating the mitochondrial bottleneck in all metazoans

    alpha-Tubulin and acetylated alpha-tubulin during ovarian follicle differentiation in the lizard Podarcis sicula Raf

    No full text
    During most of the previtellogenic oocyte growth, the follicular epithelium of the lizard Podarcis sicula shows a polymorphic structure, due to the presence of different follicle cells. These include small cells which divide and move from the periphery of the follicle to the oocyte surface, intermediate cells which represent an initial step in the process of cell enlargement, and large pyriform cells engaged in the transport of different materials to the oocyte through intercellular bridges. We have studied, by immunolocalization and immunoblotting, the localization of -tubulin and its acetylated form in different follicle cells and in the oocyte during the main steps of ovarian follicle differentiation. Our results indicate that -tubulin is present in all follicle cells at different stages of ovarian follicle differentiation, while its acetylated form is detectable exclusively in the small proliferating and migrating follicle cells. In pyriform cells, -tubulin is localized around the nucleus, extends to the cell apex, and crosses the zona pellucida into the oocyte cortex. The presence of acetylated tubulin in the small follicle cells may be related to the proliferation and/or migration of these cells. The absence of acetylated tubulin form in the cytoplasm of intermediate and pyriform cells can be related to the colocalization of -tubulin with the keratin cytoskeleton in these cells, as detected by confocal microscopy. We have also identified the colocalization of -tubulin with keratin in the cortical region of the oocyte, in particular when the cortex is engaged in the uptake of the yolk proteins. J. Exp. Zool.301A:532-541, 2004. \ua9 2004 Wiley-Liss, Inc
    corecore