1,902 research outputs found

    Divergent Pathways in COS-7 Cells Mediate Defective Internalization and Intracellular Routing of Truncated G-CSFR Forms in SCN/AML

    Get PDF
    Expression of truncated G-CSFR forms in patients with SCN/AML induces hyperproliferation and prolonged cell survival. Previously, we showed that ligand internalization is delayed and degradation of truncated G-CSFR forms is defective in patients with SCN/AML.In this study, we investigated the potential roles of dileucine and tyrosine-based motifs within the cytoplasmic domain of the G-CSFR in modulating ligand/receptor internalization. Using standard binding assays with radiolabeled ligand and COS-7 cells, substitutions in the dileucine motif or deletion of tyrosine residues in the G-CSFR did not alter internalization. Attachment of the transferrin receptor YTRF internalization motif to a truncated G-CSFR form from a patient with SCN/AML corrected defective internalization, but not receptor degradation suggesting that receptor internalization and degradation occur independently via distinct domains and/or processes.Our data suggest that distinct domains within the G-CSFR mediate separate processes for receptor internalization and degradation. Our findings using standard binding assays differ from recently published data utilizing flow cytometry

    Approximation of hindered zonal settling rates for flocculated inorganic/organic composite suspensions in inertial flow conditions

    Get PDF
    Inorganic/organic composite nuclear wastes have poor settling properties which hinder major UK decommissioning operations. Improving the settling properties of these wastes and the accurate prediction of settling rates is therefore key. However, constricted access and limited monitoring capability in radioactive environments limits the use of primary material, necessitating the use of surrogate test materials. Herein, an organic laden nuclear waste test material was characterised by examining the surface chemistry, morphology and settling behaviour. A large molecular weight polyacrylamide polymer was deployed to aggregate the organic laden nuclear waste test material. The polyacrylamide successfully flocculated the test material, increasing the zonal settling rate and decreasing the turbidity by one and two orders of magnitude respectively at optimum polymer dose conditions. Whilst displaying steric stabilisation beyond the performance maxima, reductions in flocculant performance were small with no indication of permanent stabilisation at five times the optimum dose. To mitigate risk, it is critical to understand the dynamics of the settling process. Given the porous, fractal nature of the agglomerates, fractal modified hindered settling models were assessed in order to improve predictions at low solids concentrations. In particular, predictive models using drag coefficients compatible with creeping and inertia flow regimes were utilised in tandem with structural and size data to quantify the impact of neglecting inertia drag as favoured by previous literature. It was found that at low solids concentrations, the inter-particulate spacing was significant and that inertial flow conditions were integral considerations to achieve close first-order approximations of zonal settling rate

    G-CSFR Ubiquitination Critically Regulates Myeloid Cell Survival and Proliferation

    Get PDF
    The granulocyte colony-stimulating factor receptor (G-CSFR) is a critical regulator of granulopoiesis. Mutations in the G-CSFR in patients with severe congenital neutropenia (SCN) transforming to acute myelogenous leukemia (AML) have been shown to induce hypersensitivity and enhanced growth responses to G-CSF. Recent studies have demonstrated the importance of the ubiquitin/proteasome system in the initiation of negative signaling by the G-CSFR. To further investigate the role of ubiquitination in regulating G-CSFR signaling, we generated a mutant form of the G-CSFR (K762R/G-CSFR) which abrogates the attachment of ubiquitin to the lysine residue at position 762 of the G-CSFR that is deleted in the Δ716 G-CSFR form isolated from patients with SCN/AML. In response to G-CSF, mono-/polyubiquitination of the G-CSFR was impaired in cells expressing the mutant K762R/G-CSFR compared to cells transfected with the WT G-CSFR. Cells stably transfected with the K762R/G-CSFR displayed a higher proliferation rate, increased sensitivity to G-CSF, and enhanced survival following cytokine depletion, similar to previously published data with the Δ716 G-CSFR mutant. Activation of the signaling molecules Stat5 and Akt were also increased in K762R/G-CSFR transfected cells in response to G-CSF, and their activation remained prolonged after G-CSF withdrawal. These results indicate that ubiquitination is required for regulation of G-CSFR-mediated proliferation and cell survival. Mutations that disrupt G-CSFR ubiquitination at lysine 762 induce aberrant receptor signaling and hyperproliferative responses to G-CSF, which may contribute to leukemic transformation

    Long term time variability of cosmic rays and possible relevance to the development of life on Earth

    Full text link
    An analysis is made of the manner in which the cosmic ray intensity at Earth has varied over its existence and its possible relevance to both the origin and the evolution of life. Much of the analysis relates to the 'high energy' cosmic rays (E>1014eV;=0.1PeVE>10^{14}eV;=0.1PeV) and their variability due to the changing proximity of the solar system to supernova remnants which are generally believed to be responsible for most cosmic rays up to PeV energies. It is pointed out that, on a statistical basis, there will have been considerable variations in the likely 100 My between the Earth's biosphere reaching reasonable stability and the onset of very elementary life. Interestingly, there is the increasingly strong possibility that PeV cosmic rays are responsible for the initiation of terrestrial lightning strokes and the possibility arises of considerable increases in the frequency of lightnings and thereby the formation of some of the complex molecules which are the 'building blocks of life'. Attention is also given to the well known generation of the oxides of nitrogen by lightning strokes which are poisonous to animal life but helpful to plant growth; here, too, the violent swings of cosmic ray intensities may have had relevance to evolutionary changes. A particular variant of the cosmic ray acceleration model, put forward by us, predicts an increase in lightning rate in the past and this has been sought in Korean historical records. Finally, the time dependence of the overall cosmic ray intensity, which manifests itself mainly at sub-10 GeV energies, has been examined. The relevance of cosmic rays to the 'global electrical circuit' points to the importance of this concept.Comment: 18 pages, 5 figures, accepted by 'Surveys in Geophysics

    Constitutively Active Canonical NF-κB Pathway Induces Severe Bone Loss in Mice

    Get PDF
    Physiologic osteoclastogenesis entails activation of multiple signal transduction pathways distal to the cell membrane receptor RANK. However, atypical osteoclastogenesis driven by pro-inflammatory stimuli has been described. We have reported recently a novel mechanism whereby endogenous mutational activation of the classical NF-κB pathway is sufficient to induce RANKL/RANK-independent osteoclastogenesis. Here we investigate the physiologic relevance of this phenomenon in vivo. Using a knock-in approach, the active form of IKK2, namely IKK2SSEE, was introduced into the myeloid lineage with the aid of CD11b-cre mice. Phenotypic assessment revealed that expression of IKK2SSEE in the myeloid compartment induced significant bone loss in vivo. This observation was supported by a dramatic increase in the number and size of osteoclasts in trabecular regions, elevated levels of circulating TRACP-5b, and reduced bone volume. Mechanistically, we observed that IKK2SSEE induced high expression of not only p65 but also p52 and RelB; the latter two molecules are considered exclusive members of the alternative NF-κB pathway. Intriguingly, RelB and P52 were both required to mediate the osteoclastogenic effect of IKK2SSEE and co-expression of these two proteins was sufficient to recapitulate osteoclastogenesis in the absence of RANKL or IKK2SSEE. Furthermore, we found that NF-κB2/p100 is a potent inhibitor of IKK2SSEE-induced osteoclastogenesis. Deletion of p52 enabled more robust osteoclast formation by the active kinase. In summary, molecular activation of IKK2 may play a role in conditions of pathologic bone destruction, which may be refractory to therapeutic interventions targeting the proximal RANKL/RANK signal

    Structure of the hDmc1-ssDNA filament reveals the principles of its architecture

    Get PDF
    In eukaryotes, meiotic recombination is a major source of genetic diversity, but its defects in humans lead to abnormalities such as Down's, Klinefelter's and other syndromes. Human Dmc1 (hDmc1), a RecA/Rad51 homologue, is a recombinase that plays a crucial role in faithful chromosome segregation during meiosis. The initial step of homologous recombination occurs when hDmc1 forms a filament on single-stranded (ss) DNA. However the structure of this presynaptic complex filament for hDmc1 remains unknown. To compare hDmc1-ssDNA complexes to those known for the RecA/Rad51 family we have obtained electron microscopy (EM) structures of hDmc1-ssDNA nucleoprotein filaments using single particle approach. The EM maps were analysed by docking crystal structures of Dmc1, Rad51, RadA, RecA and DNA. To fully characterise hDmc1-DNA complexes we have analysed their organisation in the presence of Ca2+, Mg2+, ATP, AMP-PNP, ssDNA and dsDNA. The 3D EM structures of the hDmc1-ssDNA filaments allowed us to elucidate the principles of their internal architecture. Similar to the RecA/Rad51 family, hDmc1 forms helical filaments on ssDNA in two states: extended (active) and compressed (inactive). However, in contrast to the RecA/Rad51 family, and the recently reported structure of hDmc1-double stranded (ds) DNA nucleoprotein filaments, the extended (active) state of the hDmc1 filament formed on ssDNA has nine protomers per helical turn, instead of the conventional six, resulting in one protomer covering two nucleotides instead of three. The control reconstruction of the hDmc1-dsDNA filament revealed 6.4 protein subunits per helical turn indicating that the filament organisation varies depending on the DNA templates. Our structural analysis has also revealed that the N-terminal domain of hDmc1 accomplishes its important role in complex formation through domain swapping between adjacent protomers, thus providing a mechanistic basis for coordinated action of hDmc1 protomers during meiotic recombination

    Interpersonal and affective dimensions of psychopathic traits in adolescents : development and validation of a self-report instrument

    Get PDF
    We report the development and psychometric evaluations of a self-report instrument designed to screen for psychopathic traits among mainstream community adolescents. Tests of item functioning were initially conducted with 26 adolescents. In a second study the new instrument was administered to 150 high school adolescents, 73 of who had school records of suspension for antisocial behavior. Exploratory factor analysis yielded a 4-factor structure (Impulsivity α = .73, Self-Centredness α = .70, Callous-Unemotional α = .69, and Manipulativeness α = .83). In a third study involving 328 high school adolescents, 130 with records of suspension for antisocial behaviour, competing measurement models were evaluated using confirmatory factor analysis. The superiority of a first-order model represented by four correlated factors that was invariant across gender and age was confirmed. The findings provide researchers and clinicians with a psychometrically strong, self-report instrument and a greater understanding of psychopathic traits in mainstream adolescents

    Conserving the Stage: Climate Change and the Geophysical Underpinnings of Species Diversity

    Get PDF
    Conservationists have proposed methods for adapting to climate change that assume species distributions are primarily explained by climate variables. The key idea is to use the understanding of species-climate relationships to map corridors and to identify regions of faunal stability or high species turnover. An alternative approach is to adopt an evolutionary timescale and ask ultimately what factors control total diversity, so that over the long run the major drivers of total species richness can be protected. Within a single climatic region, the temperate area encompassing all of the Northeastern U.S. and Maritime Canada, we hypothesized that geologic factors may take precedence over climate in explaining diversity patterns. If geophysical diversity does drive regional diversity, then conserving geophysical settings may offer an approach to conservation that protects diversity under both current and future climates. Here we tested how well geology predicts the species diversity of 14 US states and three Canadian provinces, using a comprehensive new spatial dataset. Results of linear regressions of species diversity on all possible combinations of 23 geophysical and climatic variables indicated that four geophysical factors; the number of geological classes, latitude, elevation range and the amount of calcareous bedrock, predicted species diversity with certainty (adj. R2 = 0.94). To confirm the species-geology relationships we ran an independent test using 18,700 location points for 885 rare species and found that 40% of the species were restricted to a single geology. Moreover, each geology class supported 5–95 endemic species and chi-square tests confirmed that calcareous bedrock and extreme elevations had significantly more rare species than expected by chance (P<0.0001), strongly corroborating the regression model. Our results suggest that protecting geophysical settings will conserve the stage for current and future biodiversity and may be a robust alternative to species-level predictions
    corecore