466 research outputs found

    Fewer COVID-19 neurological complications with dexamethasone and remdesivir

    Get PDF
    OBJECTIVE: To assess the impact of treatment with dexamethasone, remdesivir or both on neurological complications in acute COVID-19. METHODS: We used observational data from the International Severe Acute and emerging Respiratory Infection Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK). Hospital inpatients aged ≥18 years with laboratory-confirmed SARS-CoV-2 infection admitted between 31 January 2020 and 29 June 2021 were included. Treatment allocation was non-blinded and performed by reporting clinicians. A propensity scoring methodology was used to minimize confounding. Treatment with remdesivir, dexamethasone or both was assessed against standard of care. The primary outcome was a neurological complication occurring at the point of death, discharge, or resolution of the COVID-19 clinical episode. RESULTS: Out of 89,297 hospital inpatients, 64,088 had severe COVID-19 and 25,209 had non-hypoxic COVID-19. Neurological complications developed in 4.8% and 4.5% respectively. In both groups, neurological complications associated with increased mortality, ICU admission, worse self-care on discharge and time to recovery. In severe COVID-19, treatment with dexamethasone (n=21,129), remdesivir (n=1,428) and both combined (n=10,846) associated with a lower frequency of neurological complications: OR=0.76 (95% CI=0.69-0.83), OR 0.69 (95% CI=0.51-0.90) and OR=0.54, (95% CI=0.47-0.61) respectively. In non-hypoxic COVID-19, dexamethasone (n=2,580) associated with less neurological complications (OR=0.78, 95% CI 0.62-0.97), while the dexamethasone/remdesivir combination (n=460) showed a similar trend (OR=0.63, 95% CI=0.31-1.15). INTERPRETATION: Treatment with dexamethasone, remdesivir or both in patients hospitalised with COVID-19 associated with a lower frequency of neurological complications in an additive manner, such that the greatest benefit was observed in patients who received both drugs together. This article is protected by copyright. All rights reserved

    Outcomes of COVID-19 related hospitalization among people with HIV in the ISARIC WHO Clinical Characterization Protocol (UK): a prospective observational study

    Get PDF
    BACKGROUND: Evidence is conflicting about how HIV modulates COVID-19. We compared the presentation characteristics and outcomes of adults with and without HIV who were hospitalized with COVID-19 at 207 centers across the United Kingdom and whose data were prospectively captured by the ISARIC WHO CCP study. METHODS: We used Kaplan-Meier methods and Cox regression to describe the association between HIV status and day-28 mortality, after separate adjustment for sex, ethnicity, age, hospital acquisition of COVID-19 (definite hospital acquisition excluded), presentation date, ten individual comorbidities, and disease severity at presentation (as defined by hypoxia or oxygen therapy). RESULTS: Among 47,592 patients, 122 (0.26%) had confirmed HIV infection and 112/122 (91.8%) had a record of antiretroviral therapy. At presentation, HIV-positive people were younger (median 56 versus 74 years; p<0.001) and had fewer comorbidities, more systemic symptoms and higher lymphocyte counts and C-reactive protein levels. The cumulative day-28 mortality was similar in the HIV-positive vs. HIV-negative groups (26.7% vs. 32.1%; p=0.16), but in those under 60 years of age HIV-positive status was associated with increased mortality (21.3% vs. 9.6%; p<0.001 [log-rank test]). Mortality was higher among people with HIV after adjusting for age (adjusted hazard ratio [aHR] 1.47, 95% confidence interval [CI] 1.01-2.14; p=0.05), and the association persisted after adjusting for the other variables (aHR 1.69; 95% CI 1.15-2.48; p=0.008) and when restricting the analysis to people aged <60 years (aHR 2.87; 95% CI 1.70-4.84; p<0.001). CONCLUSIONS: HIV-positive status was associated with an increased risk of day-28 mortality among patients hospitalized for COVID-19

    Obesity, Ethnicity, and Risk of Critical Care, Mechanical Ventilation, and Mortality in Patients Admitted to Hospital with COVID-19: Analysis of the ISARIC CCP-UK Cohort

    Get PDF
    OBJECTIVE: The aim of this study was to investigate the association of obesity with in-hospital coronavirus disease 2019 (COVID-19) outcomes in different ethnic groups. METHODS: Patients admitted to hospital with COVID-19 in the United Kingdom through the Clinical Characterisation Protocol UK (CCP-UK) developed by the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) were included from February 6 to October 12, 2020. Ethnicity was classified as White, South Asian, Black, and other minority ethnic groups. Outcomes were admission to critical care, mechanical ventilation, and in-hospital mortality, adjusted for age, sex, and chronic diseases. RESULTS: Of the participants included, 54,254 (age = 76 years; 45.0% women) were White, 3,728 (57 years; 41.1% women) were South Asian, 2,523 (58 years; 44.9% women) were Black, and 5,427 (61 years; 40.8% women) were other ethnicities. Obesity was associated with all outcomes in all ethnic groups, with associations strongest for black ethnicities. When stratified by ethnicity and obesity status, the odds ratios for admission to critical care, mechanical ventilation, and mortality in black ethnicities with obesity were 3.91 (3.13-4.88), 5.03 (3.94-6.63), and 1.93 (1.49-2.51), respectively, compared with White ethnicities without obesity. CONCLUSIONS: Obesity was associated with an elevated risk of in-hospital COVID-19 outcomes in all ethnic groups, with associations strongest in Black ethnicities

    Acute kidney injury in patients hospitalized with COVID-19 from the ISARIC WHO CCP-UK Study: a prospective, multicentre cohort study.

    Get PDF
    BACKGROUND: Acute kidney injury (AKI) is common in coronavirus disease 2019 (COVID-19). This study investigated adults hospitalized with COVID-19 and hypothesized that risk factors for AKI would include comorbidities and non-White race. METHODS: A prospective multicentre cohort study was performed using patients admitted to 254 UK hospitals with COVID-19 between 17 January 2020 and 5 December 2020. RESULTS: Of 85 687 patients, 2198 (2.6%) received acute kidney replacement therapy (KRT). Of 41 294 patients with biochemistry data, 13 000 (31.5%) had biochemical AKI: 8562 stage 1 (65.9%), 2609 stage 2 (20.1%) and 1829 stage 3 (14.1%). The main risk factors for KRT were chronic kidney disease (CKD) [adjusted odds ratio (aOR) 3.41: 95% confidence interval 3.06-3.81], male sex (aOR 2.43: 2.18-2.71) and Black race (aOR 2.17: 1.79-2.63). The main risk factors for biochemical AKI were admission respiratory rate >30 breaths per minute (aOR 1.68: 1.56-1.81), CKD (aOR 1.66: 1.57-1.76) and Black race (aOR 1.44: 1.28-1.61). There was a gradated rise in the risk of 28-day mortality by increasing severity of AKI: stage 1 aOR 1.58 (1.49-1.67), stage 2 aOR 2.41 (2.20-2.64), stage 3 aOR 3.50 (3.14-3.91) and KRT aOR 3.06 (2.75-3.39). AKI rates peaked in April 2020 and the subsequent fall in rates could not be explained by the use of dexamethasone or remdesivir. CONCLUSIONS: AKI is common in adults hospitalized with COVID-19 and it is associated with a heightened risk of mortality. Although the rates of AKI have fallen from the early months of the pandemic, high-risk patients should have their kidney function and fluid status monitored closely

    Impact of cardiometabolic multimorbidity and ethnicity on cardiovascular/renal complications in patients with COVID-19

    Get PDF
    OBJECTIVE: Using a large national database of people hospitalised with COVID-19, we investigated the contribution of cardio-metabolic conditions, multi-morbidity and ethnicity on the risk of in-hospital cardiovascular complications and death. METHODS: A multicentre, prospective cohort study in 302 UK healthcare facilities of adults hospitalised with COVID-19 between 6 February 2020 and 16 March 2021. Logistic models were used to explore associations between baseline patient ethnicity, cardiometabolic conditions and multimorbidity (0, 1, 2, >2 conditions), and in-hospital cardiovascular complications (heart failure, arrhythmia, cardiac ischaemia, cardiac arrest, coagulation complications, stroke), renal injury and death. RESULTS: Of 65 624 patients hospitalised with COVID-19, 44 598 (68.0%) reported at least one cardiometabolic condition on admission. Cardiovascular/renal complications or death occurred in 24 609 (38.0%) patients. Baseline cardiometabolic conditions were independently associated with increased odds of in-hospital complications and this risk increased in the presence of cardiometabolic multimorbidity. For example, compared with having no cardiometabolic conditions, 1, 2 or ≥3 conditions was associated with 1.46 (95% CI 1.39 to 1.54), 2.04 (95% CI 1.93 to 2.15) and 3.10 (95% CI 2.92 to 3.29) times higher odds of any cardiovascular/renal complication, respectively. A similar pattern was observed for all-cause death. Compared with the white group, the South Asian (OR 1.19, 95% CI 1.10 to 1.29) and black (OR 1.53 to 95% CI 1.37 to 1.72) ethnic groups had higher risk of any cardiovascular/renal complication. CONCLUSIONS: In hospitalised patients with COVID-19, cardiovascular complications or death impacts just under half of all patients, with the highest risk in those of South Asian or Black ethnicity and in patients with cardiometabolic multimorbidit

    Distinct clinical symptom patterns in patients hospitalised with COVID-19 in an analysis of 59,011 patients in the ISARIC-4C study

    Get PDF
    COVID-19 is clinically characterised by fever, cough, and dyspnoea. Symptoms affecting other organ systems have been reported. However, it is the clinical associations of different patterns of symptoms which influence diagnostic and therapeutic decision-making. In this study, we applied clustering techniques to a large prospective cohort of hospitalised patients with COVID-19 to identify clinically meaningful sub-phenotypes. We obtained structured clinical data on 59,011 patients in the UK (the ISARIC Coronavirus Clinical Characterisation Consortium, 4C) and used a principled, unsupervised clustering approach to partition the first 25,477 cases according to symptoms reported at recruitment. We validated our findings in a second group of 33,534 cases recruited to ISARIC-4C, and in 4,445 cases recruited to a separate study of community cases. Unsupervised clustering identified distinct sub-phenotypes. First, a core symptom set of fever, cough, and dyspnoea, which co-occurred with additional symptoms in three further patterns: fatigue and confusion, diarrhoea and vomiting, or productive cough. Presentations with a single reported symptom of dyspnoea or confusion were also identified, alongside a sub-phenotype of patients reporting few or no symptoms. Patients presenting with gastrointestinal symptoms were more commonly female, had a longer duration of symptoms before presentation, and had lower 30-day mortality. Patients presenting with confusion, with or without core symptoms, were older and had a higher unadjusted mortality. Symptom sub-phenotypes were highly consistent in replication analysis within the ISARIC-4C study. Similar patterns were externally verified in patients from a study of self-reported symptoms of mild disease. The large scale of the ISARIC-4C study enabled robust, granular discovery and replication. Clinical interpretation is necessary to determine which of these observations have practical utility. We propose that four sub-phenotypes are usefully distinct from the core symptom group: gastro-intestinal disease, productive cough, confusion, and pauci-symptomatic presentations. Importantly, each is associated with an in-hospital mortality which differs from that of patients with core symptoms

    Distinct clinical symptom patterns in patients hospitalised with COVID-19 in an analysis of 59,011 patients in the ISARIC-4C study

    Get PDF
    COVID-19 is clinically characterised by fever, cough, and dyspnoea. Symptoms affecting other organ systems have been reported. However, it is the clinical associations of different patterns of symptoms which influence diagnostic and therapeutic decision-making. In this study, we applied clustering techniques to a large prospective cohort of hospitalised patients with COVID-19 to identify clinically meaningful sub-phenotypes. We obtained structured clinical data on 59,011 patients in the UK (the ISARIC Coronavirus Clinical Characterisation Consortium, 4C) and used a principled, unsupervised clustering approach to partition the first 25,477 cases according to symptoms reported at recruitment. We validated our findings in a second group of 33,534 cases recruited to ISARIC-4C, and in 4,445 cases recruited to a separate study of community cases. Unsupervised clustering identified distinct sub-phenotypes. First, a core symptom set of fever, cough, and dyspnoea, which co-occurred with additional symptoms in three further patterns: fatigue and confusion, diarrhoea and vomiting, or productive cough. Presentations with a single reported symptom of dyspnoea or confusion were also identified, alongside a sub-phenotype of patients reporting few or no symptoms. Patients presenting with gastrointestinal symptoms were more commonly female, had a longer duration of symptoms before presentation, and had lower 30-day mortality. Patients presenting with confusion, with or without core symptoms, were older and had a higher unadjusted mortality. Symptom sub-phenotypes were highly consistent in replication analysis within the ISARIC-4C study. Similar patterns were externally verified in patients from a study of self-reported symptoms of mild disease. The large scale of the ISARIC-4C study enabled robust, granular discovery and replication. Clinical interpretation is necessary to determine which of these observations have practical utility. We propose that four sub-phenotypes are usefully distinct from the core symptom group: gastro-intestinal disease, productive cough, confusion, and pauci-symptomatic presentations. Importantly, each is associated with an in-hospital mortality which differs from that of patients with core symptoms

    Co-infections, secondary infections, and antimicrobial use in patients hospitalised with COVID-19 during the first pandemic wave from the ISARIC WHO CCP-UK study: a multicentre, prospective cohort study

    Get PDF
    BACKGROUND: Microbiological characterisation of co-infections and secondary infections in patients with COVID-19 is lacking, and antimicrobial use is high. We aimed to describe microbiologically confirmed co-infections and secondary infections, and antimicrobial use, in patients admitted to hospital with COVID-19. METHODS: The International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study is an ongoing, prospective cohort study recruiting inpatients from 260 hospitals in England, Scotland, and Wales, conducted by the ISARIC Coronavirus Clinical Characterisation Consortium. Patients with a confirmed or clinician-defined high likelihood of SARS-CoV-2 infection were eligible for inclusion in the ISARIC WHO CCP-UK study. For this specific study, we excluded patients with a recorded negative SARS-CoV-2 test result and those without a recorded outcome at 28 days after admission. Demographic, clinical, laboratory, therapeutic, and outcome data were collected using a prespecified case report form. Organisms considered clinically insignificant were excluded. FINDINGS: We analysed data from 48 902 patients admitted to hospital between Feb 6 and June 8, 2020. The median patient age was 74 years (IQR 59–84) and 20 786 (42·6%) of 48 765 patients were female. Microbiological investigations were recorded for 8649 (17·7%) of 48 902 patients, with clinically significant COVID-19-related respiratory or bloodstream culture results recorded for 1107 patients. 762 (70·6%) of 1080 infections were secondary, occurring more than 2 days after hospital admission. Staphylococcus aureus and Haemophilus influenzae were the most common pathogens causing respiratory co-infections (diagnosed ≤2 days after admission), with Enterobacteriaceae and S aureus most common in secondary respiratory infections. Bloodstream infections were most frequently caused by Escherichia coli and S aureus. Among patients with available data, 13 390 (37·0%) of 36 145 had received antimicrobials in the community for this illness episode before hospital admission and 39 258 (85·2%) of 46 061 patients with inpatient antimicrobial data received one or more antimicrobials at some point during their admission (highest for patients in critical care). We identified frequent use of broad-spectrum agents and use of carbapenems rather than carbapenem-sparing alternatives. INTERPRETATION: In patients admitted to hospital with COVID-19, microbiologically confirmed bacterial infections are rare, and more likely to be secondary infections. Gram-negative organisms and S aureus are the predominant pathogens. The frequency and nature of antimicrobial use are concerning, but tractable targets for stewardship interventions exist. FUNDING: National Institute for Health Research (NIHR), UK Medical Research Council, Wellcome Trust, UK Department for International Development, Bill & Melinda Gates Foundation, EU Platform for European Preparedness Against (Re-)emerging Epidemics, NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, and NIHR HPRU in Respiratory Infections at Imperial College London

    Viral coinfections in hospitalized Coronavirus disease 2019 patients recruited to the international severe acute respiratory and emerging infections consortium WHO clinical characterisation protocol UK study

    Get PDF
    Background We conducted this study to assess the prevalence of viral coinfection in a well characterized cohort of hospitalized coronavirus disease 2019 (COVID-19) patients and to investigate the impact of coinfection on disease severity. Methods Multiplex real-time polymerase chain reaction testing for endemic respiratory viruses was performed on upper respiratory tract samples from 1002 patients with COVID-19, aged <1 year to 102 years old, recruited to the International Severe Acute Respiratory and Emerging Infections Consortium WHO Clinical Characterisation Protocol UK study. Comprehensive demographic, clinical, and outcome data were collected prospectively up to 28 days post discharge. Results A coinfecting virus was detected in 20 (2.0%) participants. Multivariable analysis revealed no significant risk factors for coinfection, although this may be due to rarity of coinfection. Likewise, ordinal logistic regression analysis did not demonstrate a significant association between coinfection and increased disease severity. Conclusions Viral coinfection was rare among hospitalized COVID-19 patients in the United Kingdom during the first 18 months of the pandemic. With unbiased prospective sampling, we found no evidence of an association between viral coinfection and disease severity. Public health interventions disrupted normal seasonal transmission of respiratory viruses; relaxation of these measures mean it will be important to monitor the prevalence and impact of respiratory viral coinfections going forward

    1H NMR Signals from urine excreted protein are a source of bias in probabilistic quotient normalization

    Get PDF
    Normalization to account for variation in urinary dilution is crucial for interpretation of urine metabolic profiles. Probabilistic quotient normalization (PQN) is used routinely in metabolomics but is sensitive to systematic variation shared across a large proportion of the spectral profile (>50%). Where 1H nuclear magnetic resonance (NMR) spectroscopy is employed, the presence of urinary protein can elevate the spectral baseline and substantially impact the resulting profile. Using 1H NMR profile measurements of spot urine samples collected from hospitalized COVID-19 patients in the ISARIC 4C study, we determined that PQN coefficients are significantly correlated with observed protein levels (r2 = 0.423, p < 2.2 × 10–16). This correlation was significantly reduced (r2 = 0.163, p < 2.2 × 10–16) when using a computational method for suppression of macromolecular signals known as small molecule enhancement spectroscopy (SMolESY) for proteinic baseline removal prior to PQN. These results highlight proteinuria as a common yet overlooked source of bias in 1H NMR metabolic profiling studies which can be effectively mitigated using SMolESY or other macromolecular signal suppression methods before estimation of normalization coefficients
    • …
    corecore