3 research outputs found

    Transcriptome sequencing of three Pseudo-nitzschia species reveals comparable gene sets and the presence of Nitric Oxide Synthase genes in diatoms

    Get PDF
    Diatoms are among the most diverse eukaryotic microorganisms on Earth, they are responsible for a large fraction of primary production in the oceans and can be found in different habitats. Pseudo-nitzschia are marine planktonic diatoms responsible for blooms in coastal and oceanic waters. We analyzed the transcriptome of three species, Pseudo-nitzschia arenysensis, Pseudo-nitzschia delicatissima and Pseudo-nitzschia multistriata, with different levels of genetic relatedness. These species have a worldwide distribution and the last one produces the neurotoxin domoic acid. We were able to annotate about 80% of the sequences in each transcriptome and the analysis of the relative functional annotations allowed comparison of the main metabolic pathways, pathways involved in the biosynthesis of isoprenoids (MAV and MEP pathways), and pathways putatively involved in domoic acid synthesis. The search for homologous transcripts among the target species and other congeneric species resulted in the discovery of a sequence annotated as Nitric Oxide Synthase (NOS), found uniquely in Pseudo-nitzschia multistriata. The predicted protein product contained all the domains of the canonical metazoan sequence. Putative NOS sequences were found in other available diatom datasets, supporting a role for nitric oxide as signaling molecule in this group of microalgae

    MRP3 is a sex determining gene in the diatom Pseudo-nitzschia multistriata

    Get PDF
    A broad diversity of sex-determining systems has evolved in eukaryotes. However, information on the mechanisms of sex determination for unicellular microalgae is limited, including for diatoms, key-players of ocean food webs. Here we report the identification of a mating type (MT) determining gene for the diatom Pseudo-nitzschia multistriata. By comparing the expression profile of the two MTs, we find five MT-biased genes, of which one, MRP3, is expressed exclusively in MT+ strains in a monoallelic manner. A short tandem repeat of specific length in the region upstream of MRP3 is consistently present in MT+ and absent in MT- strains. MRP3 overexpression in an MT- strain induces sex reversal: the transgenic MT- can mate with another MT- strain and displays altered regulation of the other MT-biased genes, indicating that they lie downstream. Our data show that a relatively simple genetic program is involved in defining the MT in P. multistriata

    RNA-Seq and differential gene expression analysis in Temora stylifera copepod females with contrasting non-feeding nauplii survival rates: an environmental transcriptomics study

    No full text
    corecore