11 research outputs found

    Confining H3PO4 network in covalent organic frameworks enables proton super flow

    Get PDF
    Development of porous materials combining stability and high performance has remained a challenge. This is particularly true for proton-transporting materials essential for applications in sensing, catalysis and energy conversion and storage. Here we report the topology guided synthesis of an imine-bonded (C=N) dually stable covalent organic framework to construct dense yet aligned one-dimensional nanochannels, in which the linkers induce hyperconjugation and inductive effects to stabilize the pore structure and the nitrogen sites on pore walls confine and stabilize the H3PO4 network in the channels via hydrogen-bonding interactions. The resulting materials enable proton super flow to enhance rates by 2–8 orders of magnitude compared to other analogues. Temperature profile and molecular dynamics reveal proton hopping at low activation and reorganization energies with greatly enhanced mobility

    Enhancement of anhydrous proton transport by supramolecular nanochannels in comb polymers

    No full text
    Transporting protons is essential in several biological processes as well as in renewable energy devices, such as fuel cells. Although biological systems exhibit precise supramolecular organization of chemical functionalities on the nanoscale to effect highly efficient proton conduction, to achieve similar organization in artificial systems remains a daunting challenge. Here, we are concerned with transporting protons on a micron scale under anhydrous conditions, that is proton transfer unassisted by any solvent, especially water. We report that proton-conducting systems derived from facially amphiphilic polymers that exhibit organized supramolecular assemblies show a dramatic enhancement in anhydrous conductivity relative to analogous materials that lack the capacity for self-organization. We describe the design, synthesis and characterization of these macromolecules, and suggest that nanoscale organization of proton-conducting functionalities is a key consideration in obtaining efficient anhydrous proton transport
    corecore