97 research outputs found

    Cellulolytic Bacteria in the foregut of the dromedary camel (Camelus dromedarius)

    Get PDF
    Foregut digesta from five feral dromedary camels were inoculated into three different enrichment media: cotton thread, filter paper, and neutral detergent fiber. A total of 283 16S rRNA gene sequences were assigned to 33 operational taxonomic units by using 99% species-level identity. LIBSHUFF revealed significant differences in the community composition across all three libraries

    Fluoride bioavailability in saliva and plaque

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different fluoride formulations may have different effects on caries prevention. It was the aim of this clinical study to assess the fluoride content, provided by NaF compared to amine fluoride, in saliva and plaque.</p> <p>Methods</p> <p>Eight trained volunteers brushed their teeth in the morning for 3 minutes with either NaF or amine fluoride, and saliva and 3-day-plaque-regrowth was collected at 5 time intervals during 6 hours after tooth brushing. The amount of collected saliva and plaque was measured, and the fluoride content was analysed using a fluoride sensitive electrode. All subjects repeated all study cycles 5 times, and 3 cycles per subject underwent statistical analysis using the Wilcoxon-Mann-Whitney test.</p> <p>Results</p> <p>Immediately after brushing the fluoride concentration in saliva increased rapidly and dropped to the baseline level after 360 minutes. No difference was found between NaF and amine fluoride. All plaque fluoride levels were elevated after 30 minutes until 120 minutes after tooth brushing, and decreasing after 360 minutes to baseline. According to the highly individual profile of fluoride in saliva and plaque, both levels of bioavailability correlated for the first 30 minutes, and the fluoride content of saliva and plaque was back to baseline after 6 hours.</p> <p>Conclusions</p> <p>Fluoride levels in saliva and plaque are interindividually highly variable. However, no significant difference in bioavailability between NaF and amine fluoride, in saliva, or in plaque was found.</p

    Altered branching patterns of Purkinje cells in mouse model for cortical development disorder

    Get PDF
    Disrupted cortical cytoarchitecture in cerebellum is a typical pathology in reeler. Particularly interesting are structural problems at the cellular level: dendritic morphology has important functional implication in signal processing. Here we describe a combinatorial imaging method of synchrotron X-ray microtomography with Golgi staining, which can deliver 3-dimensional(3-D) micro-architectures of Purkinje cell(PC) dendrites, and give access to quantitative information in 3-D geometry. In reeler, we visualized in 3-D geometry the shape alterations of planar PC dendrites (i.e., abnormal 3-D arborization). Despite these alterations, the 3-D quantitative analysis of the branching patterns showed no significant changes of the 77 ± 8° branch angle, whereas the branch segment length strongly increased with large fluctuations, comparing to control. The 3-D fractal dimension of the PCs decreased from 1.723 to 1.254, indicating a significant reduction of dendritic complexity. This study provides insights into etiologies and further potential treatment options for lissencephaly and various neurodevelopmental disorders

    Abnormal oscillatory brain dynamics in schizophrenia: a sign of deviant communication in neural network?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Slow waves in the delta (0.5–4 Hz) frequency range are indications of normal activity in sleep. In neurological disorders, focal electric and magnetic slow wave activity is generated in the vicinity of structural brain lesions. Initial studies, including our own, suggest that the distribution of the focal concentration of generators of slow waves (dipole density in the delta frequency band) also distinguishes patients with psychiatric disorders such as schizophrenia, affective disorders, and posttraumatic stress disorder.</p> <p>Methods</p> <p>The present study examined the distribution of focal slow wave activity (ASWA: abnormal slow wave activity) in116 healthy subjects, 76 inpatients with schizophrenic or schizoaffective diagnoses and 42 inpatients with affective (ICD-10: F3) or neurotic/reactive (F4) diagnoses using a newly refined measure of dipole density. Based on 5-min resting magnetoencephalogram (MEG), sources of activity in the 1–4 Hz frequency band were determined by equivalent dipole fitting in anatomically defined cortical regions.</p> <p>Results</p> <p>Compared to healthy subjects the schizophrenia sample was characterized by significantly more intense slow wave activity, with maxima in frontal and central areas. In contrast, affective disorder patients exhibited less slow wave generators mainly in frontal and central regions when compared to healthy subjects and schizophrenia patients. In both samples, frontal ASWA were related to affective symptoms.</p> <p>Conclusion</p> <p>In schizophrenic patients, the regions of ASWA correspond to those identified for gray matter loss. This suggests that ASWA might be evaluated as a measure of altered neuronal network architecture and communication, which may mediate psychopathological signs.</p

    Microbial Fuel Cells and Microbial Ecology: Applications in Ruminant Health and Production Research

    Get PDF
    Microbial fuel cell (MFC) systems employ the catalytic activity of microbes to produce electricity from the oxidation of organic, and in some cases inorganic, substrates. MFC systems have been primarily explored for their use in bioremediation and bioenergy applications; however, these systems also offer a unique strategy for the cultivation of synergistic microbial communities. It has been hypothesized that the mechanism(s) of microbial electron transfer that enable electricity production in MFCs may be a cooperative strategy within mixed microbial consortia that is associated with, or is an alternative to, interspecies hydrogen (H2) transfer. Microbial fermentation processes and methanogenesis in ruminant animals are highly dependent on the consumption and production of H2in the rumen. Given the crucial role that H2 plays in ruminant digestion, it is desirable to understand the microbial relationships that control H2 partial pressures within the rumen; MFCs may serve as unique tools for studying this complex ecological system. Further, MFC systems offer a novel approach to studying biofilms that form under different redox conditions and may be applied to achieve a greater understanding of how microbial biofilms impact animal health. Here, we present a brief summary of the efforts made towards understanding rumen microbial ecology, microbial biofilms related to animal health, and how MFCs may be further applied in ruminant research

    Resting state EEG abnormalities in autism spectrum disorders

    Get PDF
    corecore