61 research outputs found

    Mesenchymal cell survival in airway and interstitial pulmonary fibrosis

    Get PDF
    Fibrotic reactions in the airways of the lung or the pulmonary interstitium are a common pathologic outcome after exposure to a wide variety of toxic agents, including metals, particles or fibers. The survival of mesenchymal cells (fibroblasts and myofibroblasts) is a key factor in determining whether a fibroproliferative response that occurs after toxic injury to the lung will ultimately resolve or progress to a pathologic state. Several polypeptide growth factors, including members of the platelet-derived growth factor (PDGF) family and the epidermal growth factor (EGF) family, are prosurvival factors that stimulate a replicative and migratory mesenchymal cell phenotype during the early stages of lung fibrogenesis. This replicative phenotype can progress to a matrix synthetic phenotype in the presence of transforming growth factor-Ξ²1 (TGF-Ξ²1). The resolution of a fibrotic response requires growth arrest and apoptosis of mesenchymal cells, whereas progressive chronic fibrosis has been associated with mesenchymal cell resistance to apoptosis. Mesenchymal cell survival or apoptosis is further influenced by cytokines secreted during Th1 inflammation (e.g., IFN-Ξ³) or Th2 inflammation (e.g., IL-13) that modulate the expression of growth factor activity through the STAT family of transcription factors. Understanding the mechanisms that regulate the survival or death of mesenchymal cells is central to ultimately developing therapeutic strategies for lung fibrosis

    Transcriptome Analysis of the Desert Locust Central Nervous System: Production and Annotation of a Schistocerca gregaria EST Database

    Get PDF
    ) displays a fascinating type of phenotypic plasticity, designated as β€˜phase polyphenism’. Depending on environmental conditions, one genome can be translated into two highly divergent phenotypes, termed the solitarious and gregarious (swarming) phase. Although many of the underlying molecular events remain elusive, the central nervous system (CNS) is expected to play a crucial role in the phase transition process. Locusts have also proven to be interesting model organisms in a physiological and neurobiological research context. However, molecular studies in locusts are hampered by the fact that genome/transcriptome sequence information available for this branch of insects is still limited. EST information is highly complementary to the existing orthopteran transcriptomic data. Since many novel transcripts encode neuronal signaling and signal transduction components, this paper includes an overview of these sequences. Furthermore, several transcripts being differentially represented in solitarious and gregarious locusts were retrieved from this EST database. The findings highlight the involvement of the CNS in the phase transition process and indicate that this novel annotated database may also add to the emerging knowledge of concomitant neuronal signaling and neuroplasticity events. EST data constitute an important new source of information that will be instrumental in further unraveling the molecular principles of phase polyphenism, in further establishing locusts as valuable research model organisms and in molecular evolutionary and comparative entomology

    SPARC: a matricellular regulator of tumorigenesis

    Get PDF
    Although many clinical studies have found a correlation of SPARC expression with malignant progression and patient survival, the mechanisms for SPARC function in tumorigenesis and metastasis remain elusive. The activity of SPARC is context- and cell-type-dependent, which is highlighted by the fact that SPARC has shown seemingly contradictory effects on tumor progression in both clinical correlative studies and in animal models. The capacity of SPARC to dictate tumorigenic phenotype has been attributed to its effects on the bioavailability and signaling of integrins and growth factors/chemokines. These molecular pathways contribute to many physiological events affecting malignant progression, including extracellular matrix remodeling, angiogenesis, immune modulation and metastasis. Given that SPARC is credited with such varied activities, this review presents a comprehensive account of the divergent effects of SPARC in human cancers and mouse models, as well as a description of the potential mechanisms by which SPARC mediates these effects. We aim to provide insight into how a matricellular protein such as SPARC might generate paradoxical, yet relevant, tumor outcomes in order to unify an apparently incongruent collection of scientific literature

    Integrating Archaeological Theory and Predictive Modeling: a Live Report from the Scene

    Full text link

    Tandem affinity purification to identify cytosolic and nuclear GΞ²Ξ³-interacting proteins

    No full text
    It has become clear in recent years that the G beta gamma subunits of heterotrimeric proteins serve broad roles in the regulation of cellular activity and interact with many proteins in different subcellular locations including the nucleus. Protein affinity purification is a common method to identify and confirm protein interactions. When used in conjugation with mass spectrometry it can be used to identify novel protein interactions with a given bait protein. The tandem affinity purification (TAP) technique identifies partner proteins bound to tagged protein bait. Combined with protocols to enrich the nuclear fraction of whole cell lysate through sucrose cushions, TAP allows for purification of interacting proteins found specifically in the nucleus. Here we describe the use of the TAP technique on cytosolic and nuclear lysates to identify candidate proteins, through mass spectrometry, that bind to G beta(1) subunits
    • …
    corecore