84 research outputs found

    Neural correlates of sexual cue reactivity in individuals with and without compulsive sexual behaviours

    Get PDF
    Although compulsive sexual behaviour (CSB) has been conceptualized as a "behavioural" addiction and common or overlapping neural circuits may govern the processing of natural and drug rewards, little is known regarding the responses to sexually explicit materials in individuals with and without CSB. Here, the processing of cues of varying sexual content was assessed in individuals with and without CSB, focusing on neural regions identified in prior studies of drug-cue reactivity. 19 CSB subjects and 19 healthy volunteers were assessed using functional MRI comparing sexually explicit videos with non-sexual exciting videos. Ratings of sexual desire and liking were obtained. Relative to healthy volunteers, CSB subjects had greater desire but similar liking scores in response to the sexually explicit videos. Exposure to sexually explicit cues in CSB compared to non-CSB subjects was associated with activation of the dorsal anterior cingulate, ventral striatum and amygdala. Functional connectivity of the dorsal anterior cingulate-ventral striatum-amygdala network was associated with subjective sexual desire (but not liking) to a greater degree in CSB relative to non-CSB subjects. The dissociation between desire or wanting and liking is consistent with theories of incentive motivation underlying CSB as in drug addictions. Neural differences in the processing of sexual-cue reactivity were identified in CSB subjects in regions previously implicated in drug-cue reactivity studies. The greater engagement of corticostriatal limbic circuitry in CSB following exposure to sexual cues suggests neural mechanisms underlying CSB and potential biological targets for interventions

    Integrating Ion Mobility Mass Spectrometry with Molecular Modelling to Determine the Architecture of Multiprotein Complexes

    Get PDF
    Current challenges in the field of structural genomics point to the need for new tools and technologies for obtaining structures of macromolecular protein complexes. Here, we present an integrative computational method that uses molecular modelling, ion mobility-mass spectrometry (IM-MS) and incomplete atomic structures, usually from X-ray crystallography, to generate models of the subunit architecture of protein complexes. We begin by analyzing protein complexes using IM-MS, and by taking measurements of both intact complexes and sub-complexes that are generated in solution. We then examine available high resolution structural data and use a suite of computational methods to account for missing residues at the subunit and/or domain level. High-order complexes and sub-complexes are then constructed that conform to distance and connectivity constraints imposed by IM-MS data. We illustrate our method by applying it to multimeric protein complexes within the Escherichia coli replisome: the sliding clamp, (β2), the γ complex (γ3δδ′), the DnaB helicase (DnaB6) and the Single-Stranded Binding Protein (SSB4)

    Clinical practice: Breastfeeding and the prevention of allergy

    Get PDF
    The increase in allergic disease prevalence has led to heightened interest in the factors determining allergy risk, fuelled by the hope that by influencing these factors one could reduce the prevalence of allergic conditions. The most important modifiable risk factors for allergy are maternal smoking behaviour and the type of feeding. A smoke-free environment for the child (to be), exclusive breastfeeding for 4–6 months and the postponement of supplementary feeding (solids) until 4 months of age are the main measures considered effective. There is no place for restricted diets during pregnancy or lactation. Although meta-analyses suggest that hypoallergenic formula after weaning from breastfeeding grants protection against the development of allergic disease, the evidence is limited and weak. Moreover, all current feeding measures aiming at allergy prevention fail to show effects on allergic manifestations later in life, such as asthma. In conclusion, the allergy preventive effect of dietary interventions in infancy is limited. Counselling of future parents on allergy prevention should pay attention to these limitations

    Pharmacological Strategies for the Management of Levodopa-Induced Dyskinesia in Patients with Parkinson’s Disease

    Full text link

    Charge-state dependent compaction and dissociation of protein complexes: Insights from ion mobility and molecular dynamics

    No full text
    Collapse to compact states in the gas phase, with smaller collision cross sections than calculated for their native-like structure, has been reported previously for some protein complexes although not rationalized. Here we combine experimental and theoretical studies to investigate the gas-phase structures of four multimeric protein complexes during collisional activation. Importantly, using ion mobility-mass spectrometry (IM-MS), we find that all four macromolecular complexes retain their native-like topologies at low energy. Upon increasing the collision energy, two of the four complexes adopt a more compact state. This collapse was most noticeable for pentameric serum amyloid P (SAP) which contains a large central cavity. The extent of collapse was found to be highly correlated with charge state, with the surprising observation that the lowest charge states were those which experience the greatest degree of compaction. We compared these experimental results with in vacuo molecular dynamics (MD) simulations of SAP, during which the temperature was increased. Simulations showed that low charge states of SAP exhibited compact states, corresponding to collapse of the ring, while intermediate and high charge states unfolded to more extended structures, maintaining their ring-like topology, as observed experimentally. To simulate the collision-induced dissociation (CID) of different charge states of SAP, we used MS to measure the charge state of the ejected monomer and assigned this charge to one subunit, distributing the residual charges evenly among the remaining four subunits. Under these conditions, MD simulations captured the unfolding and ejection of a single subunit for intermediate charge states of SAP. The highest charge states recapitulated the ejection of compact monomers and dimers, which we observed in CID experiments of high charge states of SAP, accessed by supercharging. This strong correlation between theory and experiment has implications for further studies as well as for understanding the process of CID and for applications to gas-phase structural biology more generally

    Ionisation en couche interne et effet biologique des rayonnements

    No full text
    Les effets biologiques d’une ionisation K ont été largement étudiés dans l’espoir de mieux comprendre les mécanismes d’inactivation cellulaire et de réparation de l’ADN et pour développer d’éventuelles applications thérapeutiques. Les expériences faites avec des radionucléides incorporés (125I) ou des éléments incorporés (Br, I, P) excités sélectivement en couche K à l’aide d’un rayonnement synchrotron ont toutes indiqué un accroissement d’efficacité biologique K + Auger. L’intérêt de l’ionisation K a resurgi récemment lorsque certains travaux ont suggéré que l’ionisation K des atomes de C, N, O de l’ADN pouvait être l’événement physique primaire responsable de l’effet létal des ions. Les expériences de photoabsorption au seuil K du carbone appuient cette hypothèse
    • …
    corecore