21 research outputs found

    Operando Analyses of Solar Fuels Light Absorbers and Catalysts

    No full text
    Operando synchrotron radiation photoelectron spectroscopy in the tender X-ray energy range has been used to obtain information on the energy-band relations of semiconductor and metal-covered semiconductor surfaces while in direct contact with aqueous electrolytes under potentiostatic control. The system that was investigated consists of highly doped Si substrates that were conformally coated with ∼70 nm titania films produced by atomic-layer deposition. TiO2/electrolyte and Si/TiO2/Ni/electrolyte interfaces were then analyzed by synchrotron radiation photoelectron spectroscopy. The PES data allows for determination of the flat-band position and identification of potential regions in which Fermi level pinning, depletion, or accumulation occurred. Operando X-ray absorption spectroscopy (XAS) techniques were additionally used to investigate the properties of heterogeneous electrocatalysts for the oxygen-evolution reaction. Operando XAS including the pre-edge, edge and EXAFS regions allowed the development of a detailed picture of the catalysts under operating conditions, and elucidated the changes in the physical and electronic structure of the catalyst that accompanied increases in the applied potential. Specifically, XAS data, combined with DFT studies, indicated that the activity of the electrocatalyst correlated with the formation of Fe dopant sites in γ-NiOOH

    Unravelling the electrochemical double layer by direct probing of the solid/liquid interface

    No full text
    The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzing the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential

    Stabilizing the Meniscus for Operando Characterization of Platinum During the Electrolyte Consuming Alkaline Oxygen Evolution Reaction

    Get PDF
    Achieving a molecular-level understanding of interfacial (photo)electrochemical processes is essential in order to tailor novel and highly-performing catalytic systems. The corresponding recent development of in situ and operando tools has posed new challenges on experimental architectures. In this study, we use ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to probe the solid/liquid electrified interface of a polycrystalline Pt sample in contact with an alkaline electrolyte during hydrogen and oxygen evolution reactions. Using the “dip-and-pull” technique to probe the interface through a thin liquid layer generated on the sample surface, we observe that the electrolyte meniscus becomes unstable under sustained driving of an electrolyte-consuming reaction (such as water oxidation). The addition of an electrochemically inert supporting electrolyte mitigates this issue, maintaining a stable meniscus layer for prolonged reaction times. In contrast, for processes in which the electrolyte is replenished in the reaction pathway (i.e. water reduction in alkaline conditions), we find that the solid/liquid interface remains stable without addition of a secondary supporting electrolyte. The approach described in this work allows the extension of operando AP-XPS capabilities using the “dip-and-pull” method to a broader class of reactions consuming ionic species during complex interfacial faradaic processes
    corecore