22 research outputs found

    Nuclear Factor 90(NF90) targeted to TAR RNA inhibits transcriptional activation of HIV-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Examination of host cell-based inhibitors of HIV-1 transcription may be important for attenuating viral replication. We describe properties of a cellular double-stranded RNA binding protein with intrinsic affinity for HIV-1 TAR RNA that interferes with Tat/TAR interaction and inhibits viral gene expression.</p> <p>Results</p> <p>Utilizing TAR affinity fractionation, North-Western blotting, and mobility-shift assays, we show that the C-terminal variant of nuclear factor 90 (NF90ctv) with strong affinity for the TAR RNA, competes with Tat/TAR interaction <it>in vitro</it>. Analysis of the effect of NF90ctv-TAR RNA interaction <it>in vivo </it>showed significant inhibition of Tat-transactivation of HIV-1 LTR in cells expressing NF90ctv, as well as changes in histone H3 lysine-4 and lysine-9 methylation of HIV chromatin that are consistent with the epigenetic changes in transcriptionally repressed gene.</p> <p>Conclusion</p> <p>Structural integrity of the TAR element is crucial in HIV-1 gene expression. Our results show that perturbation Tat/TAR RNA interaction by the dsRNA binding protein is sufficient to inhibit transcriptional activation of HIV-1.</p

    HIV Promoter Integration Site Primarily Modulates Transcriptional Burst Size Rather Than Frequency

    Get PDF
    Mammalian gene expression patterns, and their variability across populations of cells, are regulated by factors specific to each gene in concert with its surrounding cellular and genomic environment. Lentiviruses such as HIV integrate their genomes into semi-random genomic locations in the cells they infect, and the resulting viral gene expression provides a natural system to dissect the contributions of genomic environment to transcriptional regulation. Previously, we showed that expression heterogeneity and its modulation by specific host factors at HIV integration sites are key determinants of infected-cell fate and a possible source of latent infections. Here, we assess the integration context dependence of expression heterogeneity from diverse single integrations of a HIV-promoter/GFP-reporter cassette in Jurkat T-cells. Systematically fitting a stochastic model of gene expression to our data reveals an underlying transcriptional dynamic, by which multiple transcripts are produced during short, infrequent bursts, that quantitatively accounts for the wide, highly skewed protein expression distributions observed in each of our clonal cell populations. Interestingly, we find that the size of transcriptional bursts is the primary systematic covariate over integration sites, varying from a few to tens of transcripts across integration sites, and correlating well with mean expression. In contrast, burst frequencies are scattered about a typical value of several per cell-division time and demonstrate little correlation with the clonal means. This pattern of modulation generates consistently noisy distributions over the sampled integration positions, with large expression variability relative to the mean maintained even for the most productive integrations, and could contribute to specifying heterogeneous, integration-site-dependent viral production patterns in HIV-infected cells. Genomic environment thus emerges as a significant control parameter for gene expression variation that may contribute to structuring mammalian genomes, as well as be exploited for survival by integrating viruses

    NF-ΞΊB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation

    No full text
    Cells latently infected with HIV represent a currently insurmountable barrier to viral eradication in infected patients. Using the J-Lat human T-cell model of HIV latency, we have investigated the role of host factor binding to the ΞΊB enhancer elements of the HIV long terminal repeat (LTR) in the maintenance of viral latency. We show that NF-ΞΊB p50–HDAC1 complexes constitutively bind the latent HIV LTR and induce histone deacetylation and repressive changes in chromatin structure of the HIV LTR, changes that impair recruitment of RNA polymerase II and transcriptional initiation. Knockdown of p50 expression with specific small hairpin RNAs reduces HDAC1 binding to the latent HIV LTR and induces RNA polymerase II recruitment. Similarly, inhibition of histone deacetylase (HDAC) activity with trichostatin A promotes binding of RNA polymerase II to the latent HIV LTR. This bound polymerase complex, however, remains non-processive, generating only short viral transcripts. Synthesis of full-length viral transcripts can be rescued under these conditions by expression of Tat. The combination of HDAC inhibitors and Tat merits consideration as a new strategy for purging latent HIV proviruses from their cellular reservoirs

    RNA-mediated displacement of an inhibitory snRNP complex activates transcription elongation

    No full text
    The transition from transcription initiation to elongation at the HIV-1 promoter is controlled by Tat, which recruits P-TEFb to TAR RNA to phosphorylate RNA polymerase II. It has long been unclear why the HIV-1 promoter is incompetent for elongation. We report that P-TEFb is recruited to the promoter in a catalytically inactive state bound to the inhibitory 7SK snRNP, thereby preventing elongation. It also has long been believed that TAR functions to recruit Tat to the promoter, but we find that Tat is recruited to the DNA template before TAR is synthesized. We propose that TAR binds Tat and P-TEFb as it emerges on the nascent transcript, competitively displacing the inhibitory 7SK snRNP and activating the P-TEFb kinase. Recruitment of an inhibitory snRNP complex at an early stage in the transcription cycle provides a new paradigm for controlling gene expression with a non-coding RNA
    corecore