5,477 research outputs found

    Visual and Ocular Manifestations of Alzheimer's Disease and Their Use as Biomarkers for Diagnosis and Progression

    Get PDF
    Alzheimer's disease (AD) is the most common form of dementia affecting the growing aging population today, with prevalence expected to rise over the next 35 years. Clinically, patients exhibit a progressive decline in cognition, memory, and social functioning due to deposition of amyloid β (Aβ) protein and intracellular hyperphosphorylated tau protein. These pathological hallmarks of AD are measured either through neuroimaging, cerebrospinal fluid analysis, or diagnosed post-mortem. Importantly, neuropathological progression occurs in the eye as well as the brain, and multiple visual changes have been noted in both human and animal models of AD. The eye offers itself as a transparent medium to cerebral pathology and has thus potentiated the development of ocular biomarkers for AD. The use of non-invasive screening, such as retinal imaging and visual testing, may enable earlier diagnosis in the clinical setting, minimizing invasive and expensive investigations. It also potentially improves disease management and quality of life for AD patients, as an earlier diagnosis allows initiation of medication and treatment. In this review, we explore the evidence surrounding ocular changes in AD and consider the biomarkers currently in development for early diagnosis

    Inductive Charging Coupler with Assistive Coils

    Full text link
    © 2016 IEEE. A wireless charging system contains a high-frequency power source, a wireless transformer/coupler, a rectifier, and the load. The wireless transformer/coupler is the key element of the wireless charging system, and the power source and the rectifier design are all dependent on its design. For a two coil type wireless transformer, the maximum efficiency is limited by the coupling coefficient, which rapidly decreases with increasing distance between the primary and secondary coils. The four coil system is widely used in low-power applications, where the maximum power transfer operating point is away from the maximum efficiency point. This paper proposes an inductive charging coupler with small assistive coils, where the high power and maximum efficiency regions overlap

    Retinal Changes in Transgenic Mouse Models of Alzheimer's Disease.

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disorder, the most common form of dementia. AD is characterised by amyloid-β (Aβ) plaques and neurofibrillary tangles (NFT) in the brain, in association with neuronal loss and synaptic failure, causing cognitive deficits. Accurate and early diagnosis is currently unavailable in lifespan, hampering early intervention of potential new treatments. Visual deficits have been well documented in AD patients, and the pathological changes identified in the brain are also believed to be found in the retina, an integral part of the central nervous system. Retinal changes can be detected by real-time non-invasive imaging, due to the transparent nature of the ocular media, potentially allowing an earlier diagnosis as well as monitoring disease progression and treatment outcome. Animal models are essential for AD research, and this review has a focus on retinal changes in various transgenic AD mouse models with retinal imaging and immunohistochemical analysis as well as therapeutic effects in those models. We also discuss the limitations of transgenic AD models in clinical translations

    Automatic quantitative analysis of experimental primary and secondary retinal neurodegeneration: implications for optic neuropathies.

    Get PDF
    Secondary neurodegeneration is thought to play an important role in the pathology of neurodegenerative disease, which potential therapies may target. However, the quantitative assessment of the degree of secondary neurodegeneration is difficult. The present study describes a novel algorithm from which estimates of primary and secondary degeneration are computed using well-established rodent models of partial optic nerve transection (pONT) and ocular hypertension (OHT). Brn3-labelled retinal ganglion cells (RGCs) were identified in whole-retinal mounts from which RGC density, nearest neighbour distances and regularity indices were determined. The spatial distribution and rate of RGC loss were assessed and the percentage of primary and secondary degeneration in each non-overlapping segment was calculated. Mean RGC number (82 592±681) and RGC density (1695±23.3 RGC/mm(2)) in naïve eyes were comparable with previous studies, with an average decline in RGC density of 71±17 and 23±5% over the time course of pONT and OHT models, respectively. Spatial analysis revealed greatest RGC loss in the superior and central retina in pONT, but significant RGC loss in the inferior retina from 3 days post model induction. In comparison, there was no significant difference between superior and inferior retina after OHT induction, and RGC loss occurred mainly along the superior/inferior axis (~30%) versus the nasal-temporal axis (~15%). Intriguingly, a significant loss of RGCs was also observed in contralateral eyes in experimental OHT. In conclusion, a novel algorithm to automatically segment Brn3a-labelled retinal whole-mounts into non-overlapping segments is described, which enables automated spatial and temporal segmentation of RGCs, revealing heterogeneity in the spatial distribution of primary and secondary degenerative processes. This method provides an attractive means to rapidly determine the efficacy of neuroprotective therapies with implications for any neurodegenerative disorder affecting the retina

    Predicting wet age-related macular degeneration (AMD) using DARC (detecting apoptosing retinal cells) AI (artificial intelligence) technology

    Get PDF
    Objectives: To assess a recently described CNN (convolutional neural network) DARC (Detection of Apoptosing Retinal Cells) algorithm in predicting new Subretinal Fluid (SRF) formation in Age-related-Macular-Degeneration (AMD). Methods: Anonymized DARC, baseline and serial OCT images (n = 427) from 29 AMD eyes of Phase 2 clinical trial (ISRCTN10751859) were assessed with CNN algorithms, enabling the location of each DARC spot on corresponding OCT slices (n = 20,629). Assessment of DARC in a rabbit model of angiogenesis was performed in parallel. Results: A CNN DARC count >5 at baseline was significantly (p = 0.0156) related to development of new SRF throughout 36 months. Prediction rate of eyes using unique DARC spots overlying new SRF had positive predictive values, sensitivities and specificities >70%, with DARC count significantly (p < 0.005) related to the magnitude of SRF accumulation at all time points. DARC identified earliest stages of angiogenesis in-vivo. Conclusions: DARC was able to predict new wet-AMD activity. Using only an OCT-CNN definition of new SRF, we demonstrate that DARC can identify early endothelial neovascular activity, as confirmed by rabbit studies. Although larger validation studies are required, this shows the potential of DARC as a biomarker of wet AMD, and potentially saving vision-loss

    Annexins in glaucoma

    Get PDF
    Glaucoma is one of the leading causes of irreversible visual loss, which has been estimated to affect 3.5% of those over 40 years old and projected to affect a total of 112 million people by 2040. Such a dramatic increase in affected patients demonstrates the need for continual improvement in the way we diagnose and treat this condition. Annexin A5 is a 36 kDa protein that is ubiquitously expressed in humans and is studied as an indicator of apoptosis in several fields. This molecule has a high calcium-dependent affinity for phosphatidylserine, a cell membrane phospholipid externalized to the outer cell membrane in early apoptosis. The DARC (Detection of Apoptosing Retinal Cells) project uses fluorescently-labelled annexin A5 to assess glaucomatous degeneration, the inherent process of which is the apoptosis of retinal ganglion cells. Furthermore, this project has conducted investigation of the retinal apoptosis in the neurodegenerative conditions of the eye and brain. In this present study, we summarized the use of annexin A5 as a marker of apoptosis in the eye. We also relayed the progress of the DARC project, developing real-time imaging of retinal ganglion cell apoptosis in vivo from the experimental models of disease and identifying mechanisms underlying neurodegeneration and its treatments, which has been applied to the first human clinical trials. DARC has potential as a biomarker in neurodegeneration, especially in the research of novel treatments, and could be a useful tool for the diagnosis and monitoring of glaucoma

    Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes.

    Get PDF
    BackgroundGeneral translational cis-elements are present in the mRNAs of all genes and affect the recruitment, assembly, and progress of preinitiation complexes and the ribosome under many physiological states. These elements include mRNA folding, upstream open reading frames, specific nucleotides flanking the initiating AUG codon, protein coding sequence length, and codon usage. The quantitative contributions of these sequence features and how and why they coordinate to control translation rates are not well understood.ResultsHere, we show that these sequence features specify 42-81% of the variance in translation rates in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus, and Homo sapiens. We establish that control by RNA secondary structure is chiefly mediated by highly folded 25-60 nucleotide segments within mRNA 5' regions, that changes in tri-nucleotide frequencies between highly and poorly translated 5' regions are correlated between all species, and that control by distinct biochemical processes is extensively correlated as is regulation by a single process acting in different parts of the same mRNA.ConclusionsOur work shows that general features control a much larger fraction of the variance in translation rates than previously realized. We provide a more detailed and accurate understanding of the aspects of RNA structure that directs translation in diverse eukaryotes. In addition, we note that the strongly correlated regulation between and within cis-control features will cause more even densities of translational complexes along each mRNA and therefore more efficient use of the translation machinery by the cell

    Topical curcumin nanocarriers are neuroprotective in eye disease

    Get PDF
    Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5dione) is a polyphenol extracted from turmeric that has long been advocated for the treatment of a variety of conditions including neurodegenerative and inflammatory disorders. Despite this promise, the clinical use of curcumin has been limited by the poor solubility and low bioavailability of this molecule. In this article, we describe a novel nanocarrier formulation comprising Pluronic-F127 stabilised D-α-Tocopherol polyethene glycol 1000 succinate nanoparticles, which were used to successfully solubilize high concentrations (4.3 mg/mL) of curcumin. Characterisation with x-ray diffraction and in vitro release assays localise curcumin to the nanocarrier interior, with each particle measuring <20 nm diameter. Curcumin-loaded nanocarriers (CN) were found to significantly protect against cobalt chloride induced hypoxia and glutamate induced toxicity in vitro, with CN treatment significantly increasing R28 cell viability. Using established glaucoma-related in vivo models of ocular hypertension (OHT) and partial optic nerve transection (pONT), topical application of CN twice-daily for three weeks significantly reduced retinal ganglion cell loss compared to controls. Collectively, these results suggest that our novel topical CN formulation has potential as an effective neuroprotective therapy in glaucoma and other eye diseases with neuronal pathology

    Update on the Risk of Hepatocellular Carcinoma in Chronic Hepatitis B Virus Infection

    Get PDF
    Chronic hepatitis B virus infection is an important cause of liver-related morbidity and mortality, with hepatocellular carcinoma being the most life-threatening complication. Because of the highly variable clinical course of the disease, enormous research efforts have been made with the aim of revealing the factors in the natural history that are relevant to hepatocarcinogenesis. These include epidemiological studies of predisposing risk groups, viral studies of mutations within the hepatitis B viral genome, and clinical correlation of these risk factors in predicting the likelihood of development of hepatocellular cancer in susceptible hosts. This update addresses these risks, with emphasis on the latest research relevant to hepatocarcinogenesis
    • …
    corecore