4,216 research outputs found

    Evolution of olfactory receptor in oriental fruit fly Dacus dorsalis

    Full text link

    Early diffusion evidence of retrograde transsynaptic degeneration in the human visual system

    Get PDF
    We investigated whether diffusion tensor imaging (DTI) indices of white matter integrity would offer early markers of retrograde transsynaptic degeneration (RTD) in the visual system after stroke Objective: We investigated whether diffusion tensor imaging (DTI) indices of white matter integrity would offer early markers of retrograde transsynaptic degeneration (RTD) in the visual system after stroke. Methods: We performed a prospective longitudinal analysis of the sensitivity of DTI markers of optic tract health in 12 patients with postsynaptic visual pathway stroke, 12 stroke controls, and 28 healthy controls. We examined group differences in (1) optic tract fractional anisotropy (FA-asymmetry), (2) perimetric measures of visual impairment, and (3) the relationship between FA-asymmetry and perimetric assessment. Results: FA-asymmetry was higher in patients with visual pathway lesions than in control groups. These differences were evident 3 months from the time of injury and did not change significantly at 12 months. Perimetric measures showed evidence of impairment in participants with visual pathway stroke but not in control groups. A significant association was observed between FA-asymmetry and perimetric measures at 3 months, which persisted at 12 months. Conclusions: DTI markers of RTD are apparent 3 months from the time of injury. This represents the earliest noninvasive evidence of RTD in any species. Furthermore, these measures associate with measures of visual impairment. DTI measures offer a reproducible, noninvasive, and sensitive method of investigating RTD and its role in visual impairment

    Non-degenerate four-wave mixing in rubidium vapor: transient regime

    Full text link
    We investigate the transient response of the generated light from Four-Wave Mixing (FWM) in the diamond configuration using a step-down field excitation. The transients show fast decay times and oscillations that depend on the detunings and intensities of the fields. A simplified model taking into account the thermal motion of the atoms, propagation, absorption and dispersion effects shows qualitative agreement with the experimental observations with the energy levels in rubidium (5S1/2, 5P1/2, 5P3/2 and 6S1/2). The atomic polarization comes from all the contributions of different velocity classes of atoms in the ensemble modifying dramatically the total transient behavior of the light from FWM.Comment: 11 pages, 11 figures, to be published in Physical Review

    Coherent Control of Ultracold Collisions with Chirped Light: Direction Matters

    Full text link
    We demonstrate the ability to coherently control ultracold atomic Rb collisions using frequency-chirped light on the nanosecond time scale. For certain center frequencies of the chirp, the rate of inelastic trap-loss collisions induced by negatively chirped light is dramatically suppressed compared to the case of a positive chirp. We attribute this to a fundamental asymmetry in the system: an excited wavepacket always moves inward on the attractive molecular potential. For a positive chirp, the resonance condition moves outward in time, while for a negative chirp, it moves inward, in the same direction as the excited wavepacket; this allows multiple interactions between the wavepacket and the light, enabling the wavepacket to be returned coherently to the ground state. Classical and quantum calculations support this interpretation

    Levy distribution in many-particle quantum systems

    Full text link
    Levy distribution, previously used to describe complex behavior of classical systems, is shown to characterize that of quantum many-body systems. Using two complimentary approaches, the canonical and grand-canonical formalisms, we discovered that the momentum profile of a Tonks-Girardeau gas, -- a one-dimensional gas of NN impenetrable (hard-core) bosons, harmonically confined on a lattice at finite temperatures, obeys Levy distribution. Finally, we extend our analysis to different confinement setups and demonstrate that the tunable Levy distribution properly reproduces momentum profiles in experimentally accessible regions. Our finding allows for calibration of complex many-body quantum states by using a unique scaling exponent.Comment: 7 pages, 6 figures, results are generalized, new examples are adde

    Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies.

    Get PDF
    Immediate freezing at -20°C or below has been considered the gold standard for microbiome preservation, yet this approach is not feasible for many field studies, ranging from anthropology to wildlife conservation. Here we tested five methods for preserving human and dog fecal specimens for periods of up to 8 weeks, including such types of variation as freeze-thaw cycles and the high temperature fluctuations often encountered under field conditions. We found that three of the methods-95% ethanol, FTA cards, and the OMNIgene Gut kit-can preserve samples sufficiently well at ambient temperatures such that differences at 8 weeks are comparable to differences among technical replicates. However, even the worst methods, including those with no fixative, were able to reveal microbiome differences between species at 8 weeks and between individuals after a week, allowing meta-analyses of samples collected using various methods when the effect of interest is expected to be larger than interindividual variation (although use of a single method within a study is strongly recommended to reduce batch effects). Encouragingly for FTA cards, the differences caused by this method are systematic and can be detrended. As in other studies, we strongly caution against the use of 70% ethanol. The results, spanning 15 individuals and over 1,200 samples, provide our most comprehensive view to date of storage effects on stool and provide a paradigm for the future studies of other sample types that will be required to provide a global view of microbial diversity and its interaction among humans, animals, and the environment. IMPORTANCE Our study, spanning 15 individuals and over 1,200 samples, provides our most comprehensive view to date of storage and stabilization effects on stool. We tested five methods for preserving human and dog fecal specimens for periods of up to 8 weeks, including the types of variation often encountered under field conditions, such as freeze-thaw cycles and high temperature fluctuations. We show that several cost-effective methods provide excellent microbiome stability out to 8 weeks, opening up a range of field studies with humans and wildlife that would otherwise be cost-prohibitive

    Structural dichroism in the antiferromagnetic insulating phase of V_2O_3

    Full text link
    We performed near-edge x-ray absorption spectroscopy (XANES) at V K edge in the antiferromagnetic insulating (AFI) phase of a 2.8% Cr-doped V_2O_3 single crystal. Linear dichroism of several percent is measured in the hexagonal plane and found to be in good agreement with ab-initio calculations based on multiple scattering theory. This experiment definitively proves the structural origin of the signal and therefore solves a controversy raised by previous interpretations of the same dichroism as non-reciprocal. It also calls for a further investigation of the role of the magnetoelectric annealing procedure in cooling to the AFI phase.Comment: 4 pages 3 figures. To be published in Phys. Rev. B (2005
    • …
    corecore