3 research outputs found

    Five decades of cuprizone, an updated model to replicate demyelinating diseases

    Get PDF
    Abstract: Introduction: Demyelinating diseases of the central nervous system (CNS) comprise a group of neurological disorders characterized by progressive (and eventually irreversible) loss of oligodendrocytes and myelin sheaths in the white matter tracts. Some of myelin disorders include: Multiple sclerosis, Guillain-Barré syndrome, peripheral nerve polyneuropathy and others. To date, the etiology of these disorders is not well known and no effective treatments are currently available against them. Therefore, further research is needed to gain a better understand and treat these patients. To accomplish this goal, it is necessary to have appropriate animal models that closely resemble the pathophysiology and clinical signs of these diseases. Herein, we describe the model of toxic demyelination induced by cuprizone (CPZ), a copper chelator that reduces the cytochrome and monoamine oxidase activity into the brain, produces mitochondrial stress and triggers the local immune response. These biochemical and cellular responses ultimately result in selective loss of oligodendrocytes and microglia accumulation, which conveys to extensive areas of demyelination and gliosis in corpus callosum, superior cerebellar peduncles and cerebral cortex. Remarkably, some aspects of the histological pattern induced by CPZ are similar to those found in multiple sclerosis. CPZ exposure provokes behavioral changes, impairs motor skills and affects mood as that observed in several demyelinating diseases. Upon CPZ removal, the pathological and histological changes gradually revert. Therefore, some authors have postulated that the CPZ model allows to partially mimic the disease relapses observed in some demyelinating diseases. Conclusion: for five decades, the model of CPZ-induced demyelination is a good experimental approach to study demyelinating diseases that has maintained its validity, and is a suitable pharmacological model for reproducing some key features of demyelinating diseases, including multiple sclerosis.UAEME

    Immune environment of the brain in schizophrenia and during the psychotic episode: a human post-mortem study

    No full text
    A causal relationship between immune dysregulation and schizophrenia has been supported by genome-wide association studies and epidemiological evidence. It remains unclear to what extent the brain immune environment is implicated in this hypothesis. We investigated the immunophenotype of microglia and the presence of perivascular macrophages and T lymphocytes in post-mortem brain tissue. Dorsal prefrontal cortex of 40 controls (22F:18M) and 37 (10F:27M ) schizophrenia cases, of whom 16 had active psychotic symptoms at the time of death, was immunostained for seven markers of microglia (CD16, CD32a, CD32b, CD64, CD68, HLA-DR, Iba1 and P2RY12), two markers perivascular macrophages (CD163 and CD206) and T-lymphocytes (CD3). Automated quantification was blinded to the case designation and performed separately on the grey and white matter. 3D reconstruction of Iba1-positive microglia was performed in selected cases. An increased cortical expression of microglial Fc receptors (CD64 F=7.92 p=0.007; CD64/HLA-DR ratio F=5.02, p=0.029) highlights the importance of communication between the central and peripheral immune systems in schizophrenia. Patients in whom psychotic symptoms were present at death demonstrated an age-dependent increase of Iba1 and increased CD64/HLA-DR ratios relative to patients without psychotic symptoms. Microglia in schizophrenia demonstrated a primed/reactive morphology. A potential role for T-lymphocytes was observed, but we did not confirm the presence of recruited macrophages in the brains of schizophrenia patients. Taking in account the limitations of a post-mortem study, our findings support the hypothesis of an alteration of the brain immune environment in schizophrenia, with symptomatic state- and age-dependent effects
    corecore