12,390 research outputs found

    No evidence of dark matter in the solar neighborhood

    Full text link
    We measured the surface mass density of the Galactic disk at the solar position, up to 4 kpc from the plane,by means of the kinematics of ~400 thick disk stars. The results match the expectations for the visible mass only, and no dark matter is detected in the volume under analysis. The current models of dark matter halo are excluded with a significance higher than 5sigma, unless a highly prolate halo is assumed, very atypical in cold dark matter simulations. The resulting lack of dark matter at the solar position challenges the current models.Comment: Proceeding of the first binational Sochias-AAA meeting, held in San Juan, Argentin

    The structures underlying soliton solutions in integrable hierarchies

    Full text link
    We point out that a common feature of integrable hierarchies presenting soliton solutions is the existence of some special ``vacuum solutions'' such that the Lax operators evaluated on them, lie in some abelian subalgebra of the associated Kac-Moody algebra. The soliton solutions are constructed out of those ``vacuum solitons'' by the dressing transformation procedure.Comment: Talk given at the I Latin American Symposium on High Energy Physics, I SILAFAE, Merida, Mexico, November/96, 5 pages, LaTeX, needs aipproc.tex, aipproc.sty, aipproc.cls, available from ftp://ftp.aip.org/ems/tex/macros/proceedings/6x9

    No evidence for a dark matter disk within 4 kpc from the Galactic plane

    Full text link
    We estimated the dynamical surface mass density (Sigma) at the solar Galactocentric distance between 2 and 4 kpc from the Galactic plane, as inferred from the observed kinematics of the thick disk. We find Sigma(z=2 kpc)=57.6+-5.8 Mo pc^-2, and it shows only a tiny increase in the z-range considered by our investigation. We compared our results with the expectations for the visible mass, adopting the most recent estimates in the literature for contributions of the Galactic stellar disk and interstellar medium, and proposed models of the dark matter distribution. Our results match the expectation for the visible mass alone, never differing from it by more than 0.8 $Mo pc^-2 at any z, and thus we find little evidence for any dark component. We assume that the dark halo could be undetectable with our method, but the dark disk, recently proposed as a natural expectation of the LambdaCDM models, should be detected. Given the good agreement with the visible mass alone, models including a dark disk are less likely, but within errors its existence cannot be excluded. In any case, these results put constraints on its properties: thinner models (scale height lower than 4 kpc) reconcile better with our results and, for any scale height, the lower-density models are preferred. We believe that successfully predicting the stellar thick disk properties and a dark disk in agreement with our observations could be a challenging theoretical task.Comment: Accepted for publication in ApJ Letter

    Infrared Emission from Clusters in the Starforming Disk of He2-10

    Get PDF
    We have made subarcsecond-resolution images of the central 10" of the Wolf-Rayet dwarf galaxy He 2-10 at 11.7 microns, using the Long Wavelength Spectrometer on the Keck Telescope. The spatial distribution of the infrared emission roughly agrees with that of the rising spectrum radio sources seen by Kobulnicky & Johnson (1999) and confirms that those sources are compact HII regions rather than SNR or other objects. The infrared sources are more extended than the subarcsecond rising spectrum radio sources, although the entire complex is still less than 5" in extent. On sizescales of 1" the infrared and radio emission are in excellent agreement, with each source requiring several hundred to a thousand O stars for excitation. The nebulae lie in a flattened disk-like distribution about 240 by 100 pc and provide all of the flux measured by IRAS for the entire galaxy in the 12 micron band; 30% of the total IRAS flux from the galaxy emanates from one 15-30 pc source. In this galaxy, intense star formation, probably triggered by an accretion event, is confined to a central disk which breaks up into distinct nebulae which presumably mark the sites of young super star clusters.Comment: Accepted for Publication in the Astronomical Journa

    Functional near-infrared spectroscopy in the neuropsychological assessment of spatial memory: A systematic review; 35123299

    Get PDF
    Functional near-infrared spectroscopy (fNIRS) is a non-invasive optical imaging technique that employs near-infrared light to measure cortical brain oxygenation. The use of fNIRS has increased exponentially in recent years. Spatial memory is defined as the ability to learn and use spatial information. This neuropsychological process is constantly used in our daily lives and can be measured by fNIRS but no research has reviewed whether this technique can be useful in the neuropsychological assessment of spatial memory. This study aimed to review empirical work on the use of fNIRS in the neuropsychological assessment of human spatial memory. We used four databases: PubMed, PsycINFO, Scopus and Web of Science, and a total of 18 articles were found to be eligible. Most of the articles assessed spatial or visuospatial working memory with a predominance in computer-based tasks, used fNIRS equipment of 16 channels and mainly measured the prefrontal cortex (PFC). The studies analysed found linear or quadratic relationships between working memory load and PFC activity, greater activation of PFC activity and worse behavioural results in healthy older people in comparison with healthy adults, and hyperactivation of PFC as a form of compensation in clinical samples. We conclude that fNIRS is compatible with the standard neuropsychological assessment of spatial memory, making it possible to complement behavioural results with data of cortical functional activity. © 202

    Electrical conductivity measured in atomic carbon chains

    Full text link
    The first electrical conductivity measurements of monoatomic carbon chains are reported in this study. The chains were obtained by unraveling carbon atoms from graphene ribbons while an electrical current flowed through the ribbon and, successively, through the chain. The formation of the chains was accompanied by a characteristic drop in the electrical conductivity. The conductivity of carbon chains was much lower than previously predicted for ideal chains. First-principles calculations using both density functional and many-body perturbation theory show that strain in the chains determines the conductivity in a decisive way. Indeed, carbon chains are always under varying non-zero strain that transforms its atomic structure from cumulene to polyyne configuration, thus inducing a tunable band gap. The modified electronic structure and the characteristics of the contact to the graphitic periphery explain the low conductivity of the locally constrained carbon chain.Comment: 21 pages, 9 figure
    • …
    corecore