44 research outputs found

    Possible origins of macroscopic left-right asymmetry in organisms

    Full text link
    I consider the microscopic mechanisms by which a particular left-right (L/R) asymmetry is generated at the organism level from the microscopic handedness of cytoskeletal molecules. In light of a fundamental symmetry principle, the typical pattern-formation mechanisms of diffusion plus regulation cannot implement the "right-hand rule"; at the microscopic level, the cell's cytoskeleton of chiral filaments seems always to be involved, usually in collective states driven by polymerization forces or molecular motors. It seems particularly easy for handedness to emerge in a shear or rotation in the background of an effectively two-dimensional system, such as the cell membrane or a layer of cells, as this requires no pre-existing axis apart from the layer normal. I detail a scenario involving actin/myosin layers in snails and in C. elegans, and also one about the microtubule layer in plant cells. I also survey the other examples that I am aware of, such as the emergence of handedness such as the emergence of handedness in neurons, in eukaryote cell motility, and in non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue. Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec

    Reduction of REM-sleep by a tryptophan-free amino acid diet

    No full text
    The acute administration of a tryptophan-free amino acid diet to rats has previously been reported to produce a marked reduction in brain serotonin concentrations. The present study examined the effects of such a diet on electroencephalographic sleep measures. There was a decrease in REM sleep and a small increase in nonREM sleep, with no change in total sleep time. In view of these and other observations, the hypothesis that the serotonergic system plays an important role in the maintenance of nonREM sleep should be carefully reevaluated

    Growth hormone pretreatment in man blocks the response to growth hormone-releasing hormone; evidence for a direct effect of growth hormone.

    No full text
    The effect of pretreatment with biosynthetic methionyl human GH (hGH) on the GH response to GHRH has been studied in normal subjects. Eight volunteers were given either 4 IU hGH or placebo s.c. 12-hourly for 72 h before a GHRH test, or a single s.c. dose of 4 IU hGH 12 h before a GHRH test. Somatomedin-C (Sm-C) levels at the time of the GHRH tests were significantly elevated after treatment with hGH compared to placebo, and the GH response to GHRH was significantly attenuated. A further six subjects were given 2 IU hGH or placebo i.v., and i.v. GHRH 3 h later; there was no rise in Sm-C for the 5 h of the study after either treatment; nevertheless, the response to GHRH was completely abolished by pretreatment with hGH. These results demonstrate that GH can regulate its own secretion independently of changes in Sm-C levels, through a mechanism other than the inhibition of GHRH release. The attenuated response to GHRH in the presence of elevated Sm-C levels may be related to Sm-C, or be a more direct effect of the recently elevated GH levels
    corecore