18 research outputs found

    Potential of utilization of renewable energy technologies in gulf countries

    Full text link
    This critical review report highlights the enormous potentiality and availability of renewable energy sources in the Gulf region. The earth suffers from extreme air pollution, climate changes, and extreme problems due to the enormous usage of underground carbon resources applications materialized in industrial, transport, and domestic sectors. The countries under Gulf Cooperation Council, i.e., Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates, mainly explore those underground carbon resources for crude oil extraction and natural gas production. As a nonrenewable resource, these are bound to be exhausted in the near future. Hence, this review discusses the importance and feasibility of renewable sources in the Gulf region to persuade the sci-entific community to launch and explore renewable sources to obtain the maximum benefit in electric power generation. In most parts of the Gulf region, solar and wind energy sources are abundantly available. However, attempts to harness those resources are very limited. Furthermore, in this review report, innovative areas of advanced research (such as bioenergy, biomass) were proposed for the Gulf region to extract those resources at a higher magnitude to generate surplus power generation. Overall, this report clearly depicts the current scenario, current power demand, currently installed capacities, and the future strategies of power production from renewable power sources (viz., solar, wind, tidal, biomass, and bioenergy) in each and every part of the Gulf region

    Finite element computation of multi-physical micropolar transport phenomena from an inclined moving plate in porous media

    Get PDF
    Non-Newtonian flows arise in numerous industrial transport processes including materials fabrication systems. Micropolar theory offers an excellent mechanism for exploring the fluid dynamics of new non-Newtonian materials which possess internal microstructure. Magnetic fields may also be used for controlling electrically-conducting polymeric flows. To explore numerical simulation of transport in rheological materials processing, in the current paper, a finite element computational solution is presented for magnetohydrodynamic (MHD), incompressible, dissipative, radiative and chemically-reacting micropolar fluid flow, heat and mass transfer adjacent to an inclined porous plate embedded in a saturated homogenous porous medium. Heat generation/absorption effects are included. Rosseland’s diffusion approximation is used to describe the radiative heat flux in the energy equation. A Darcy model is employed to simulate drag effects in the porous medium. The governing transport equations are rendered into non-dimensional form under the assumption of low Reynolds number and also low magnetic Reynolds number. Using a Galerkin formulation with a weighted residual scheme, finite element solutions are presented to the boundary value problem. The influence of plate inclination, Eringen coupling number, radiation-conduction number, heat absorption/generation parameter, chemical reaction parameter, plate moving velocity parameter, magnetic parameter, thermal Grashof number, species (solutal) Grashof number, permeability parameter, Eckert number on linear velocity, micro-rotation, temperature and concentration profiles. Furthermore, the influence of selected thermo-physical parameters on friction factor, surface heat transfer and mass transfer rate is also tabulated. The finite element solutions are verified with solutions from several limiting cases in the literature. Interesting features in the flow are identified and interpreted

    Maximising Yield and Engine Efficiency Using Optimised Waste Cooking Oil Biodiesel

    Full text link
    In this study, waste cooking oil (WCO) was used as a feedstock for biodiesel production, where the pretreatment of WCO was performed using mineral acids to reduce the acid value. The response surface methodology (RSM) was used to create an interaction for different operating parameters that affect biodiesel yield. The optimised biodiesel yield was 93% at a reaction temperature of 57.50 °C, catalyst concentration 0.25 w/w, methanol to oil ratio 8.50:1, reaction stirring speed 600 rpm, and a reaction time of 3 h. Physicochemical properties, including lower heating value, density, viscosity, cloud point, and flash point of biodiesel blends, were determined using American Society for Testing and Materials (ASTM) standards. Biodiesel blends B10, B20, B30, B40, and B50 were tested on a compression ignition engine. Engine performance parameters, including brake torque (BT), brake power (BP), brake thermal efficiency (BTE), and brake specific fuel consumption (BSFC) were determined using biodiesel blends and compared to that of high-speed diesel. The average BT reduction for biodiesel blends compared to HSD at 3000 rpm were found to be 1.45%, 2%, 2.2%, 3.09%, and 3.5% for B10, B20, B30, B40, and B50, respectively. The average increase in BSFC for biodiesel blends compared to HSD at 3500 rpm were found to be 1.61%, 5.73%, 8.8%, 12.76%, and 18% for B10, B20, B30, B40, and B50, respectively.</jats:p

    Enhancement in combustion, performance, and emission characteristics of a diesel engine fueled with Ce-ZnO nanoparticle additive added to soybean biodiesel blends

    Full text link
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). This study considered the impacts of diesel-soybean biodiesel blends mixed with 3% cerium coated zinc oxide (Ce-ZnO) nanoparticles on the performance, emission, and combustion characteristics of a single cylinder diesel engine. The fuel blends were prepared using 25% soybean biodiesel in diesel (SBME25). Ce-ZnO nanoparticle additives were blended with SBME25 at 25, 50, and 75 ppm using the ultrasonication process with a surfactant (Span 80) at 2 vol.% to enhance the stability of the blend. A variable compression ratio engine operated at a 19.5:1 compression ratio (CR) using these blends resulted in an improvement in overall engine characteristics. With 50 ppm Ce-ZnO nanoparticle additive in SBME25 (SBME25Ce-ZnO50), the brake thermal efficiency (BTE) and heat release rate (HRR) increased by 20.66% and 18.1%, respectively; brake specific fuel consumption (BSFC) by 21.81%; and the CO, smoke, and hydrocarbon (HC) decreased by 30%, 18.7%, and 21.5%, respectively, compared to SBME25 fuel operation. However, the oxides of nitrogen slightly rose for all the nanoparticle added blends. As such, 50 ppm of Ce-ZnO nanoparticle in the blend is a potent choice for the enhancement of engine performance, combustion, and emission characteristics
    corecore