18,509 research outputs found

    Experimental and numerical analysis of the cyclic behaviour of RC beam-column connections with plain reinforcing bars

    Get PDF
    The information available in the literature about the cyclic behaviour of reinforced concrete elements with plain reinforcing bars is scarce. As a consequence, the influence of bar slippage in elements with plain bars is not yet comprehensively understood. In this paper are presented and discussed the main results of the cyclic tests carried out on five full-scale reinforced concrete beam-column joints with plain bars and without specific detailing for seismic demands. An additional joint specimen with deformed bars was also tested for comparison. Furthermore, numerical models were built to simulate the response of two of the specimens. Particular attention was given to the influence of bar slippage. The results of the conducted analyses underline the importance of accounting for bond-slip in the numerical modelling of elements with plain bars and also highlight the need for specific models to simulate the effects of this mechanism in the presence of plain bars

    Superfluid and Fermi liquid phases of Bose-Fermi mixtures in optical lattices

    Full text link
    We describe interacting mixtures of ultracold bosonic and fermionic atoms in harmonically confined optical lattices. For a suitable choice of parameters we study the emergence of superfluid and Fermi liquid (non-insulating) regions out of Bose-Mott and Fermi-band insulators, due to finite Boson and Fermion hopping. We obtain the shell structure for the system and show that angular momentum can be transferred to the non-insulating regions from Laguerre-Gaussian beams, which combined with Bragg spectroscopy can reveal all superfluid and Fermi liquid shells.Comment: 4 pages, 2 figure

    Nonlinear modeling of the cyclic response of RC columns

    Get PDF
    Cyclic load reversals (like those induced by earthquakes) result in accelerated bond degradation, leading to significant bar slippage. The bond-slip mechanism is reported to be one of the most common causes of damage and even collapse of existing RC structures subjected to earthquake loading. RC structures with plain reinforcing bars, designed and built prior to the enforcement of the modern seismic-oriented design philosophies, are particularly sensitive to bond degradation. However, perfect bond conditions are typically assumed in the numerical analysis of RC structures. This paper describes the numerical modeling of the cyclic response of two RC columns, one built with deformed bars and the other with plain bars and structural detailing similar to that typically adopted in pre-1970s structures. For each column, different modeling strategies to simulate the column response were tested. Models were built using the OpenSees and the SeismoStruct platforms, and calibrated with the available tests results. Within each platform, different types of nonlinear elements were used to represent the columns. Bond-slip effects were included in the OpenSees models resorting to a simple modeling strategy. The models and the parameters adopted are presented and discussed. Comparison is established between the most relevant experimental results and the corresponding results provided by the numerical models. Conclusions are drawn about the capacity of the tested models to simulate the columns response and about the influence of considering or not considering the effects of bars slippage

    BCS-BEC crossover of collective excitations in two-band superfluids

    Full text link
    We use the functional integral approach to study low energy collective excitations in a continuum model of neutral two-band superfluids at T=0 for all couplings with a separable pairing interaction. In the long wavelength and low frequency limit, we recover Leggett's analytical results in weak coupling (BCS) for s-wave pairing, and further obtain analytical results in strong coupling (BEC) for both two and three dimensional systems. We also analyse numerically the behavior of the out-of-phase {\it exciton} (finite frequency) mode and the in-phase {\it phonon} (Goldstone) mode from weak to strong coupling limits, including the crossover region. In principle, the evolution of Goldstone and finite frequency modes from weak to strong coupling may be accessible experimentally in the superfluid phase of neutral Fermi atomic gases, and could serve as a test of the validity of the theoretical analysis and approximations proposed here.Comment: 14 pages, 9 figures. Submitted to PR

    Causal Structure and Birefringence in Nonlinear Electrodynamics

    Full text link
    We investigate the causal structure of general nonlinear electrodynamics and determine which Lagrangians generate an effective metric conformal to Minkowski. We also proof that there is only one analytic nonlinear electrodynamics presenting no birefringence.Comment: 11 pages, no figure

    Schwinger's Principle and Gauge Fixing in the Free Electromagnetic Field

    Full text link
    A manifestly covariant treatment of the free quantum eletromagnetic field, in a linear covariant gauge, is implemented employing the Schwinger's Variational Principle and the B-field formalism. It is also discussed the abelian Proca's model as an example of a system without constraints.Comment: 8 pages. Format PTPtex. No figur

    Two-band superfluidity from the BCS to the BEC limit

    Full text link
    We analyze the evolution of two-band superfluidity from the weak coupling Bardeen-Cooper-Schrieffer (BCS) to the strong coupling Bose-Einstein condensation (BEC) limit. When the interband interaction is tuned from negative to positive values, a quantum phase transition occurs from a 0-phase to a π\pi-phase state, depending on the relative phase of two order parameters. Furthermore, population imbalances between the two bands can be created by tuning the intraband or interband interactions. We also find two undamped low energy collective excitations corresponding to in-phase and out-of-phase modes. Lastly, we derive the coupled Ginzburg-Landau equations, and show that they reduce to coupled Gross-Pitaevskii equations for two types of bosons in the BEC limit.Comment: 4 pages and 3 figure
    • …
    corecore