7,093 research outputs found
Origin of the heavy elements in HD 140283. Measurement of europium abundance
HD 140283 is a nearby (V=7.7) subgiant metal-poor star, extensively analysed
in the literature. Although many spectra have been obtained for this star, none
showed a signal-to-noise (S/N) ratio high enough to enable a very accurate
derivation of abundances from weak lines. The detection of europium proves that
the neutron-capture elements in this star originate in the r-process, and not
in the s-process, as recently claimed in the literature. Based on the OSMARCS
1D LTE atmospheric model and with a consistent approach based on the spectrum
synthesis code Turbospectrum, we measured the europium lines at 4129 {\AA} and
4205 {\AA}, taking into account the hyperfine structure of the transitions. The
spectrum, obtained with a long exposure time of seven hours at the
Canada-France-Hawaii Telescope (CFHT), has a resolving power of 81000 and a S/N
ratio of 800 at 4100 {\AA}. We were able to determine the abundance A(Eu)=-2.35
dex, compatible with the value predicted for the europium from the r-process.
The abundance ratio [Eu/Ba]=+0.58 dex agrees with the trend observed in
metal-poor stars and is also compatible with a strong r-process contribution to
the origin of the neutron-capture elements in HD 140283.Comment: 10 pages, 7 figures. To be published in A\&
High-resolution abundance analysis of HD 140283
HD 140283 is a reference subgiant that is metal poor and confirmed to be a
very old star. The abundances of this type of old star can constrain the nature
and nucleosynthesis processes that occurred in its (even older) progenitors.
The present study may shed light on nucleosynthesis processes yielding heavy
elements early in the Galaxy. A detailed abundance analysis of a high-quality
spectrum is carried out, with the intent of providing a reference on stellar
lines and abundances of a very old, metal-poor subgiant. We aim to derive
abundances from most available and measurable spectral lines. The analysis is
carried out using high-resolution (R = 81 000) and high signal-to-noise ratio
(800 < S/N/pixel < 3400) spectrum, in the wavelength range 3700 - 10475,
obtained with a seven-hour exposure time, using the ESPaDOnS at the CFHT. The
calculations in LTE were performed with the OSMARCS 1D atmospheric model and
the spectrum synthesis code Turbospectrum, while the analysis in NLTE is based
on the MULTI code. We present LTE abundances for 26 elements, and NLTE
calculations for the species C I, O I, Na I, Mg I, Al I, K I, Ca I, Sr II, and
Ba II lines. The abundance analysis provided an extensive line list suitable
for metal-poor subgiant stars. The results for Li, CNO, alpha-, and iron peak
elements are in good agreement with literature. The newly NLTE Ba abundance,
along with a NLTE Eu correction and a 3D Ba correction from literature, leads
to [Eu/Ba] = +0.59 +/- 0.18. This result confirms a dominant r-process
contribution, possibly together with a very small contribution from the main
s-process, to the neutron-capture elements in HD 140283. Overabundances of the
lighter heavy elements and the high abundances derived for Ba, La, and Ce
favour the operation of the weak r-process in HD 140283.Comment: 34 pages, 27 figure
SAMplus: adaptive optics at optical wavelengths for SOAR
Adaptive Optics (AO) is an innovative technique that substantially improves
the optical performance of ground-based telescopes. The SOAR Adaptive Module
(SAM) is a laser-assisted AO instrument, designed to compensate ground-layer
atmospheric turbulence in near-IR and visible wavelengths over a large Field of
View. Here we detail our proposal to upgrade SAM, dubbed SAMplus, that is
focused on enhancing its performance in visible wavelengths and increasing the
instrument reliability. As an illustration, for a seeing of 0.62 arcsec at 500
nm and a typical turbulence profile, current SAM improves the PSF FWHM to 0.40
arcsec, and with the upgrade we expect to deliver images with a FWHM of
arcsec -- up to 0.23 arcsec FWHM PSF under good seeing
conditions. Such capabilities will be fully integrated with the latest SAM
instruments, putting SOAR in an unique position as observatory facility.Comment: To appear in Proc. SPIE 10703 (Ground-based and Airborne
Instrumentation for Astronomy VII; SPIEastro18
Global monopole, dark matter and scalar tensor theory
In this article, we discuss the space-time of a global monopole field as a
candidate for galactic dark matter in the context of scalar tensor theory.Comment: 8 pages, Accepted in Mod. Phys. Lett.
Electrostatic self-force in (2+1)-dimensional cosmological gravity
Point sources in (2+1)-dimensional gravity are conical singularities that
modify the global curvature of the space giving rise to self-interaction
effects on classical fields. In this work we study the electrostatic
self-interaction of a point charge in the presence of point masses in
(2+1)-dimensional gravity with a cosmological constant.Comment: 9 pages, Late
Path Integral Approach to the Scattering Theory of Quantum Transport
The scattering theory of quantum transport relates transport properties of
disordered mesoscopic conductors to their transfer matrix \bbox{T}. We
introduce a novel approach to the statistics of transport quantities which
expresses the probability distribution of \bbox{T} as a path integral. The
path integal is derived for a model of conductors with broken time reversal
invariance in arbitrary dimensions. It is applied to the
Dorokhov-Mello-Pereyra-Kumar (DMPK) equation which describes
quasi-one-dimensional wires. We use the equivalent channel model whose
probability distribution for the eigenvalues of \bbox{TT}^{\dagger} is
equivalent to the DMPK equation independent of the values of the forward
scattering mean free paths. We find that infinitely strong forward scattering
corresponds to diffusion on the coset space of the transfer matrix group. It is
shown that the saddle point of the path integral corresponds to ballistic
conductors with large conductances. We solve the saddle point equation and
recover random matrix theory from the saddle point approximation to the path
integral.Comment: REVTEX, 9 pages, no figure
Electrostatic in Reissner-Nordstrom space-time with a conical defect
We calculate the electrostatic potential generated by a point charge in the
space-time of Reissner-Nordstrom with a conical defect. An expression for the
self-energy is also presented.Comment: 7 pages, LATEX fil
- âŠ