96,769 research outputs found

    Bulk asymptotics of skew-orthogonal polynomials for quartic double well potential and universality in the matrix model

    Full text link
    We derive bulk asymptotics of skew-orthogonal polynomials (sop) \pi^{\bt}_{m}, β=1\beta=1, 4, defined w.r.t. the weight exp(2NV(x))\exp(-2NV(x)), V(x)=gx4/4+tx2/2V (x)=gx^4/4+tx^2/2, g>0g>0 and t<0t<0. We assume that as m,Nm,N \to\infty there exists an ϵ>0\epsilon > 0, such that ϵ(m/N)λcrϵ\epsilon\leq (m/N)\leq \lambda_{\rm cr}-\epsilon, where λcr\lambda_{\rm cr} is the critical value which separates sop with two cuts from those with one cut. Simultaneously we derive asymptotics for the recursive coefficients of skew-orthogonal polynomials. The proof is based on obtaining a finite term recursion relation between sop and orthogonal polynomials (op) and using asymptotic results of op derived in \cite{bleher}. Finally, we apply these asymptotic results of sop and their recursion coefficients in the generalized Christoffel-Darboux formula (GCD) \cite{ghosh3} to obtain level densities and sine-kernels in the bulk of the spectrum for orthogonal and symplectic ensembles of random matrices.Comment: 6 page

    Matrices coupled in a chain. I. Eigenvalue correlations

    Full text link
    The general correlation function for the eigenvalues of pp complex hermitian matrices coupled in a chain is given as a single determinant. For this we use a slight generalization of a theorem of Dyson.Comment: ftex eynmeh.tex, 2 files, 8 pages Submitted to: J. Phys.

    2048 is (PSPACE) Hard, but Sometimes Easy

    Full text link
    We prove that a variant of 2048, a popular online puzzle game, is PSPACE-Complete. Our hardness result holds for a version of the problem where the player has oracle access to the computer player's moves. Specifically, we show that for an n×nn \times n game board G\mathcal{G}, computing a sequence of moves to reach a particular configuration C\mathbb{C} from an initial configuration C0\mathbb{C}_0 is PSPACE-Complete. Our reduction is from Nondeterministic Constraint Logic (NCL). We also show that determining whether or not there exists a fixed sequence of moves S{,,,}k\mathcal{S} \in \{\Uparrow, \Downarrow, \Leftarrow, \Rightarrow\}^k of length kk that results in a winning configuration for an n×nn \times n game board is fixed-parameter tractable (FPT). We describe an algorithm to solve this problem in O(4kn2)O(4^k n^2) time.Comment: 13 pages, 11 figure

    A New Push-Relabel Algorithm for Sparse Networks

    Full text link
    In this paper, we present a new push-relabel algorithm for the maximum flow problem on flow networks with nn vertices and mm arcs. Our algorithm computes a maximum flow in O(mn)O(mn) time on sparse networks where m=O(n)m = O(n). To our knowledge, this is the first O(mn)O(mn) time push-relabel algorithm for the m=O(n)m = O(n) edge case; previously, it was known that push-relabel implementations could find a max-flow in O(mn)O(mn) time when m=Ω(n1+ϵ)m = \Omega(n^{1+\epsilon}) (King, et. al., SODA `92). This also matches a recent flow decomposition-based algorithm due to Orlin (STOC `13), which finds a max-flow in O(mn)O(mn) time on sparse networks. Our main result is improving on the Excess-Scaling algorithm (Ahuja & Orlin, 1989) by reducing the number of nonsaturating pushes to O(mn)O(mn) across all scaling phases. This is reached by combining Ahuja and Orlin's algorithm with Orlin's compact flow networks. A contribution of this paper is demonstrating that the compact networks technique can be extended to the push-relabel family of algorithms. We also provide evidence that this approach could be a promising avenue towards an O(mn)O(mn)-time algorithm for all edge densities.Comment: 23 pages. arXiv admin note: substantial text overlap with arXiv:1309.2525 - This version includes an extension of the result to the O(n) edge cas
    corecore