860 research outputs found

    Numerical investigation of high-pressure combustion in rocket engines using Flamelet/Progress-variable models

    Full text link
    The present paper deals with the numerical study of high pressure LOx/H2 or LOx/hydrocarbon combustion for propulsion systems. The present research effort is driven by the continued interest in achieving low cost, reliable access to space and more recently, by the renewed interest in hypersonic transportation systems capable of reducing time-to-destination. Moreover, combustion at high pressure has been assumed as a key issue to achieve better propulsive performance and lower environmental impact, as long as the replacement of hydrogen with a hydrocarbon, to reduce the costs related to ground operations and increase flexibility. The current work provides a model for the numerical simulation of high- pressure turbulent combustion employing detailed chemistry description, embedded in a RANS equations solver with a Low Reynolds number k-omega turbulence model. The model used to study such a combustion phenomenon is an extension of the standard flamelet-progress-variable (FPV) turbulent combustion model combined with a Reynolds Averaged Navier-Stokes equation Solver (RANS). In the FPV model, all of the thermo-chemical quantities are evaluated by evolving the mixture fraction Z and a progress variable C. When using a turbulence model in conjunction with FPV model, a probability density function (PDF) is required to evaluate statistical averages of chemical quantities. The choice of such PDF must be a compromise between computational costs and accuracy level. State- of-the-art FPV models are built presuming the functional shape of the joint PDF of Z and C in order to evaluate Favre-averages of thermodynamic quantities. The model here proposed evaluates the most probable joint distribution of Z and C without any assumption on their behavior.Comment: presented at AIAA Scitech 201

    Is J enough? Comparison of gravitational waves emitted along the total angular momentum direction with other preferred orientations

    Full text link
    The gravitational wave signature emitted from a merging binary depends on the orientation of an observer relative to the binary. Previous studies suggest that emission along the total initial or total final angular momenta leads to both the strongest and simplest signal from a precessing compact binary. In this paper we describe a concrete counterexample: a binary with m1/m2=4m_1/m_2=4, a1=0.6x^=−a2a_1=0.6 \hat{x} = -a_2, placed in orbit in the x,y plane. We extract the gravitational wave emission along several proposed emission directions, including the initial (Newtonian) orbital angular momentum; the final (~ initial) total angular momentum; and the dominant principal axis of <LaLb>M<L_a L_b>_M. Using several diagnostics, we show that the suggested preferred directions are not representative. For example, only for a handful of other directions (< 15%) will the gravitational wave signal have comparable shape to the one extracted along each of these fiducial directions, as measured by a generalized overlap (>0.95). We conclude that the information available in just one direction (or mode) does not adequately encode the complexity of orientation-dependent emission for even short signals from merging black hole binaries. Future investigations of precessing, unequal-mass binaries should carefully explore and model their orientation-dependent emission.Comment: v2 errat

    Parabolic stable surfaces with constant mean curvature

    Full text link
    We prove that if u is a bounded smooth function in the kernel of a nonnegative Schrodinger operator −L=−(Δ+q)-L=-(\Delta +q) on a parabolic Riemannian manifold M, then u is either identically zero or it has no zeros on M, and the linear space of such functions is 1-dimensional. We obtain consequences for orientable, complete stable surfaces with constant mean curvature H∈RH\in\mathbb{R} in homogeneous spaces E(κ,τ)\mathbb{E}(\kappa,\tau) with four dimensional isometry group. For instance, if M is an orientable, parabolic, complete immersed surface with constant mean curvature H in H2×R\mathbb{H}^2\times\mathbb{R}, then ∣H∣≤1/2|H|\leq 1/2 and if equality holds, then M is either an entire graph or a vertical horocylinder.Comment: 15 pages, 1 figure. Minor changes have been incorporated (exchange finite capacity by parabolicity, and simplify the proof of Theorem 1)

    Geophysical Research

    Get PDF
    Contains research objectives and reports on two research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 36-039-AMC-03200(E)National Aeronautics and Space Administration (Grant NGR-22-009-131)Joint Services Electronics Programs (Contract DA 36-039-AMC-03200(E)

    Existence of Integral mm-Varifolds minimizing ∫∣A∣p\int |A|^p and ∫∣H∣p\int |H|^p, p>mp>m, in Riemannian Manifolds

    Full text link
    We prove existence and partial regularity of integral rectifiable mm-dimensional varifolds minimizing functionals of the type ∫∣H∣p\int |H|^p and ∫∣A∣p\int |A|^p in a given Riemannian nn-dimensional manifold (N,g)(N,g), 2≤mm2\leq mm, under suitable assumptions on NN (in the end of the paper we give many examples of such ambient manifolds). To this aim we introduce the following new tools: some monotonicity formulas for varifolds in RS\mathbb{R}^S involving ∫∣H∣p\int |H|^p, to avoid degeneracy of the minimizer, and a sort of isoperimetric inequality to bound the mass in terms of the mentioned functionals.Comment: 33 pages; this second submission corresponds to the published version of the paper, minor typos are fixe

    Radio Astronomy

    Get PDF
    Contains research objectives, summary of research and reports on eleven research projects.National Aeronautics and Space Administration (Grant NGL 22-009-016)National Science Foundation (Grant GP-14854)Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E)National Science Foundation (Grant GP-13056)Sloan Fund for Basic Research (M. I. T. Grant 312
    • …
    corecore