8,311 research outputs found

    The energy spectrum observed by the AGASA experiment and the spatial distribution of the sources of ultra-high energy cosmic rays

    Full text link
    Seven and a half years of continuous monitoring of giant air showers triggered by ultra high-energy cosmic rays have been recently summarized by the AGASA collaboration. The resulting energy spectrum indicates clearly that the cosmic ray spectrum extends well beyond the Greisen-Zatsepin-Kuzmin (GZK) cut-off at ∼5×1019\sim 5 \times 10^{19} eV. Furthermore, despite the small number statistics involved, some structure in the spectrum may be emerging. Using numerical simulations, it is demonstrated in the present work that these features are consistent with a spatial distribution of sources that follows the distribution of luminous matter in the local Universe. Therefore, from this point of view, there is no need for a second high-energy component of cosmic rays dominating the spectrum beyond the GZK cut-off.Comment: 14 pages, 4 figures, Astrophys. J. Letters (submitted

    On the significance of the observed clustering of ultra-high energy cosmic rays

    Get PDF
    Three pairs of possibly correlated ultra-high energy cosmic ray events were reported by Hayashida et al (1996). Here we calculate the propagation of the corresponding particles through both the intergalactic and galactic magnetic fields. The large scale disc and halo magnetic components are approximated by the models of Stanev (1997). The intergalactic magnetic field intensity is modulated by the actual density of luminous matter along the corresponding lines of sight, calculated from the CfA redshift catalogue (Huchra et al, 1995). The results indicate that, if the events of each pair had a common source and were simultaneously produced, they either originated inside the galactic halo or otherwise very unlikely events were observed. On the other hand, an estimate of the arrival probability of ultra-high energy cosmic rays, under the assumption that the distribution of luminous matter in the nearby universe traces the distribution of the sources of the particles and intensity of the intergalactic magnetic field, suggests that the pairs are chance clusterings.Comment: Ap. J. Letters Accepted - 13 pages + 4 figure

    Acceptance of fluorescence detectors and its implication in energy spectrum inference at the highest energies

    Full text link
    Along the years HiRes and AGASA experiments have explored the fluorescence and the ground array experimental techniques to measure extensive air showers, being both essential to investigate the ultra-high energy cosmic rays. However, such Collaborations have published contradictory energy spectra for energies above the GZK cut-off. In this article, we investigate the acceptance of fluorescence telescopes to different primary particles at the highest energies. Using CORSIKA and CONEX shower simulations without and with the new pre-showering scheme, which allows photons to interact in the Earth magnetic field, we estimate the aperture of the HiRes-I telescope for gammas, iron nuclei and protons primaries as a function of the number of simulated events and primary energy. We also investigate the possibility that systematic differences in shower development for hadrons and gammas could mask or distort vital features of the cosmic ray energy spectrum at energies above the photo-pion production threshold. The impact of these effects on the true acceptance of a fluorescence detector is analyzed in the context of top-down production models

    Spin superfluidity and spin-orbit gauge symmetry fixing

    Full text link
    The Hamiltonian describing 2D electron gas, in a spin-orbit active medium, can be cast into a consistent non-Abelian gauge field theory leading to a proper definition of the spin current. The generally advocated gauge symmetric version of the theory results in current densities that are gauge covariant, a fact that poses severe concerns on their physical nature. We show that in fact the problem demands gauge fixing, leaving no room to ambiguity in the definition of physical spin currents. Gauge fixing also allows for polarized edge excitations not present in the gauge symmetric case. The scenario here is analogous to that of superconductivity gauge theory. We develop a variational formulation that accounts for the constraints between U(1) physical fields and SU(2) gauge fields and show that gauge fixing renders a physical matter and radiation currents and derive the particular consequences for the Rashba SO interaction.Comment: to appear in EP

    Directed paths on hierarchical lattices with random sign weights

    Full text link
    We study sums of directed paths on a hierarchical lattice where each bond has either a positive or negative sign with a probability pp. Such path sums JJ have been used to model interference effects by hopping electrons in the strongly localized regime. The advantage of hierarchical lattices is that they include path crossings, ignored by mean field approaches, while still permitting analytical treatment. Here, we perform a scaling analysis of the controversial ``sign transition'' using Monte Carlo sampling, and conclude that the transition exists and is second order. Furthermore, we make use of exact moment recursion relations to find that the moments always determine, uniquely, the probability distribution $P(J)$. We also derive, exactly, the moment behavior as a function of $p$ in the thermodynamic limit. Extrapolations ($n\to 0$) to obtain for odd and even moments yield a new signal for the transition that coincides with Monte Carlo simulations. Analysis of high moments yield interesting ``solitonic'' structures that propagate as a function of pp. Finally, we derive the exact probability distribution for path sums JJ up to length L=64 for all sign probabilities.Comment: 20 pages, 12 figure

    A Unified Algebraic Approach to Classical Yang-Baxter Equation

    Full text link
    In this paper, the different operator forms of classical Yang-Baxter equation are given in the tensor expression through a unified algebraic method. It is closely related to left-symmetric algebras which play an important role in many fields in mathematics and mathematical physics. By studying the relations between left-symmetric algebras and classical Yang-Baxter equation, we can construct left-symmetric algebras from certain classical r-matrices and conversely, there is a natural classical r-matrix constructed from a left-symmetric algebra which corresponds to a parak\"ahler structure in geometry. Moreover, the former in a special case gives an algebraic interpretation of the ``left-symmetry'' as a Lie bracket ``left-twisted'' by a classical r-matrix.Comment: To appear in Journal of Physics A: Mathematical and Theoretica

    Indução floral.

    Get PDF
    Comportamento vegetativo e floral da mangueira; fatores que influenciam o processo de floração; manejo da indução floral; produção de duas safras no ano

    Strongly Localized Electrons in a Magnetic Field: Exact Results on Quantum Interference and Magnetoconductance

    Full text link
    We study quantum interference effects on the transition strength for strongly localized electrons hopping on 2D square and 3D cubic lattices in a magnetic field B. In 2D, we obtain closed-form expressions for the tunneling probability between two arbitrary sites by exactly summing the corresponding phase factors of all directed paths connecting them. An analytic expression for the magnetoconductance, as an explicit function of the magnetic flux, is derived. In the experimentally important 3D case, we show how the interference patterns and the small-B behavior of the magnetoconductance vary according to the orientation of B.Comment: 4 pages, RevTe

    On the Whitham hierarchy: dressing scheme, string equations and additional symmetrie

    Get PDF
    A new description of the universal Whitham hierarchy in terms of a factorization problem in the Lie group of canonical transformations is provided. This scheme allows us to give a natural description of dressing transformations, string equations and additional symmetries for the Whitham hierarchy. We show how to dress any given solution and prove that any solution of the hierarchy may be undressed, and therefore comes from a factorization of a canonical transformation. A particulary important function, related to the Ï„\tau-function, appears as a potential of the hierarchy. We introduce a class of string equations which extends and contains previous classes of string equations considered by Krichever and by Takasaki and Takebe. The scheme is also applied for an convenient derivation of additional symmetries. Moreover, new functional symmetries of the Zakharov extension of the Benney gas equations are given and the action of additional symmetries over the potential in terms of linear PDEs is characterized

    On the Whitham hierarchy: dressing scheme, string equations and additional symmetrie

    Get PDF
    A new description of the universal Whitham hierarchy in terms of a factorization problem in the Lie group of canonical transformations is provided. This scheme allows us to give a natural description of dressing transformations, string equations and additional symmetries for the Whitham hierarchy. We show how to dress any given solution and prove that any solution of the hierarchy may be undressed, and therefore comes from a factorization of a canonical transformation. A particulary important function, related to the Ï„\tau-function, appears as a potential of the hierarchy. We introduce a class of string equations which extends and contains previous classes of string equations considered by Krichever and by Takasaki and Takebe. The scheme is also applied for an convenient derivation of additional symmetries. Moreover, new functional symmetries of the Zakharov extension of the Benney gas equations are given and the action of additional symmetries over the potential in terms of linear PDEs is characterized
    • …
    corecore