5,701 research outputs found

    Non-Chern-Simons Topological Mass Generation in (2+1) Dimensions

    Get PDF
    By dimensional reduction of a massive BF theory, a new topological field theory is constructed in (2+1) dimensions. Two different topological terms, one involving a scalar and a Kalb-Ramond fields and another one equivalent to the four-dimensional BF term, are present. We constructed two actions with these topological terms and show that a topological mass generation mechanism can be implemented. Using the non-Chern-Simons topological term, an action is proposed leading to a classical duality relation between Klein-Gordon and Maxwell actions. We also have shown that an action in (2+1) dimensions with the Kalb-Ramond field is related by Buscher's duality transformation to a massive gauge-invariant Stuckelberg-type theory.Comment: 8 pages, no figures, RevTE

    Consistent deformations of [p,p]-type gauge field theories

    Full text link
    Using BRST-cohomological techniques, we analyze the consistent deformations of theories describing free tensor gauge fields whose symmetries are represented by Young tableaux made of two columns of equal length p, p>1. Under the assumptions of locality and Poincare invariance, we find that there is no consistent deformation of these theories that non-trivially modifies the gauge algebra and/or the gauge transformations. Adding the requirement that the deformation contains no more than two derivatives, the only possible deformation is a cosmological-constant-like term.Comment: 17 pages, details of a proof added, accepted for publication in JHE

    Extended excitons and compact heliumlike biexcitons in type-II quantum dots.

    Get PDF
    We have used magneto-photoluminescence measurements to establish that InP/GaAs quantum dots have a type-II band (staggered) alignment. The average excitonic Bohr radius and the binding energy are estimated to be 15 nm and 1.5 meV respectively. When compared to bulk InP, the excitonic binding is weaker due to the repulsive (type-II) potential at the hetero-interface. The measurements are extended to over almost six orders of magnitude of laser excitation powers and to magnetic fields of up to 50 tesla. It is shown that the excitation power can be used to tune the average hole occupancy of the quantum dots, and hence the strength of the electron-hole binding. The diamagnetic shift coe±cient is observed to drastically reduce as the quantum dot ensemble makes a gradual transition from a regime where the emission is from (hydrogen-like) two-particle excitonic states to a regime where the emission from (helium-like) four-particle biexcitonic states also become significant

    Functional Bosonization of Non-Relativistic Fermions in (2+1)(2+1) Dimensions

    Full text link
    We analyze the universality of the bosonization rules in non-relativistic fermionic systems in (2+1)d(2+1)d. We show that, in the case of linear fermionic dispersion relations, a general fermionic theory can be mapped into a gauge theory in such a way that the fermionic density maps into a magnetic flux and the fermionic current maps into a transverse electric field. These are universal rules in the sense that they remain valid whatever the interaction considered. We also show that these rules are universal in the case of non-linear dispersion relations provided we consider only density-density interactions. We apply the functional bosonization formalism to a non-relativistic and non-local massive Thirring-like model and evaluate the spectrum of collective excitations in several limits. In the large mass limit, we are able to exactly calculate this spectrum for arbitrary density-density and current-current interactions. We also analyze the massless case and show that it has no collective excitations for any density-density potential in the Gaussian approximation. Moreover, the presence of current interactions may induce a gapless mode with a linear dispersion relation.Comment: 26 Pages, LaTeX, Final version to appear in International Journal of Modern Physics

    Quasi-degenerate neutrinos and tri-bi-maximal mixing

    Full text link
    Assuming high-energy tri-bi-maximal mixing we study the radiative running of leptonic mixing angles and obtain limits on the high-energy scale from requiring consistency with the observed mixing. We construct a model in which a non-Abelian discrete family symmetry leads both to a quasi-degenerate neutrino mass spectrum and to near tri-bi-maximal mixing.Comment: 7 pages, to appear in the proceedings of DISCRETE'0
    • …
    corecore