3,318 research outputs found

    The effects of solar particle events on the middle atmosphere

    Get PDF
    Solar particle events (SPEs) have been investigated since the late 1960's for possible effects on the middle atmosphere. Solar protons from SPEs produce ionizations, dissociations, dissociative ionizations, and excitations in the middle atmosphere. The production of HO(x) and NO(x) and their subsequent effects on ozone can also be computed using energy deposition and photochemical models. The effects of SPE-produced HO(x) species on the odd nitrogen abundance of the middle atmosphere as well as the SPE-produced long term effects on ozone. Model computations indicate fairly good agreement with ozone data for the SPE-induced ozone depletion caused by NO(y) species connected with the August 1972 SPE. The model computations indicate that NO(y) will not be substantially changed over a solar cycle by SPEs. The changes are mainly at high latitudes and are on time scales of several months, after which the NO(y) drifts back to its ambient levels

    Development of the technology for the fabrication of reliable laminar from control panels

    Get PDF
    Materials were assessed and fabrication techniques were developed for use in the manufacture of wing surface materials compatible with the application of both aluminum alloys and nonmetallic composites. The concepts investigated included perforations and slots in the metallic test panels and microporosity and perforations in the composite test panels. Perforations were produced in the metallic test panels by the electron beam process and slots were developed by controlled gaps between the metal sheets. Microporosity was produced in the composite test panels by the resin bleed process, and perforations were produced by the fugitive fiber technique. Each of these concepts was fabricated into test panels, and air flow tests were conducted on the panels

    Study of the application of advanced technologies to laminar flow control systems for subsonic transports. Volume 1: Summary

    Get PDF
    A study was conducted to evaluate the technical and economic feasibility of applying laminar flow control to the wings and empennage of long-range subsonic transport aircraft compatible with initial operation in 1985. For a design mission range of 10,186 km (5500 n mi), advanced technology laminar-flow-control (LFC) and turbulent-flow (TF) aircraft were developed for both 200 and 400-passenger payloads, and compared on the basis of production costs, direct operating costs, and fuel efficiency. Parametric analyses were conducted to establish the optimum geometry for LFC and TF aircraft, advanced LFC system concepts and arrangements were evaluated, and configuration variations maximizing the effectiveness of LFC were developed. For the final LFC aircraft, analyses were conducted to define maintenance costs and procedures, manufacturing costs and procedures, and operational considerations peculiar to LFC aircraft. Compared to the corresponding advanced technology TF transports, the 200- and 400-passenger LFC aircraft realized reductions in fuel consumption up to 28.2%, reductions in direct operating costs up to 8.4%, and improvements in fuel efficiency, in ssm/lb of fuel, up to 39.4%. Compared to current commercial transports at the design range, the LFC study aircraft demonstrate improvements in fuel efficiency up to 131%. Research and technology requirements requisite to the development of LFC transport aircraft were identified

    Surface energy and stability of stress-driven discommensurate surface structures

    Full text link
    A method is presented to obtain {\it ab initio} upper and lower bounds to surface energies of stress-driven discommensurate surface structures, possibly non-periodic or exhibiting very large unit cells. The instability of the stressed, commensurate parent of the discommensurate structure sets an upper bound to its surface energy; a lower bound is defined by the surface energy of an ideally commensurate but laterally strained hypothetical surface system. The surface energies of the phases of the Si(111):Ga and Ge(111):Ga systems and the energies of the discommensurations are determined within ±0.2\pm 0.2 eV.Comment: 4 pages RevTeX. 2 Figures not included. Ask for a hard copy (through regular mail) to [email protected]

    Disk-Loss and Disk Renewal Phases in Classical Be Stars II. Detailed Analysis of Spectropolarimetric Data

    Full text link
    In Wisniewski et al. 2010, paper I, we analyzed 15 years of spectroscopic and spectropolarimetric data from the Ritter and Pine Bluff Observatories of 2 Be stars, 60 Cygni and {\pi} Aquarii, when a transition from Be to B star occurred. Here we anaylize the intrinsic polarization, where we observe loop-like structures caused by the rise and fall of the polarization Balmer Jump and continuum V-band polarization being mismatched temporally with polarimetric outbursts. We also see polarization angle deviations from the mean, reported in paper I, which may be indicative of warps in the disk, blobs injected at an inclined orbit, or spiral density waves. We show our ongoing efforts to model time dependent behavior of the disk to constrain the phenomena, using 3D Monte Carlo radiative transfer codes.Comment: 2 pages, 6 figures, IAU Symposium 27

    Discovery of Highly Obscured Galaxies in the Zone of Avoidance

    Get PDF
    We report the discovery of twenty-five previously unknown galaxies in the Zone of Avoidance. Our systematic search for extended extra-galactic sources in the GLIMPSE and MIPSGAL mid-infrared surveys of the Galactic plane has revealed two overdensities of these sources, located around l ~ 47 and 55 degrees and |b| less than 1 degree in the Sagitta-Aquila region. These overdensities are consistent with the local large-scale structure found at similar Galactic longitude and extending from |b| ~ 4 to 40 degrees. We show that the infrared spectral energy distribution of these sources is indeed consistent with those of normal galaxies. Photometric estimates of their redshift indicate that the majority of these galaxies are found in the redshift range z = 0.01 - 0.05, with one source located at z = 0.07. Comparison with known sources in the local Universe reveals that these galaxies are located at similar overdensities in redshift space. These new galaxies are the first evidence of a bridge linking the large-scale structure between both sides of the Galactic plane at very low Galactic latitude and clearly demonstrate the feasibility of detecting galaxies in the Zone of Avoidance using mid-to-far infrared surveys.Comment: Accepted for publication in the Astronomical Journal, 28 pages, 5 tables, 11 figure
    corecore