6 research outputs found

    Inhibition of all-TRANS-retinoic acid metabolism by R116010 induces antitumour activity

    Get PDF
    All-trans-retinoic acid is a potent inhibitor of cell proliferation and inducer of differentiation. However, the clinical use of all-trans-retinoic acid in the treatment of cancer is significantly hampered by its toxicity and the prompt emergence of resistance, believed to be caused by increased all-trans-retinoic acid metabolism. Inhibitors of all-trans-retinoic acid metabolism may therefore prove valuable in the treatment of cancer. In this study, we characterize R116010 as a new anticancer drug that is a potent inhibitor of all-trans-retinoic acid metabolism. In vitro, R116010 potently inhibits all-trans-retinoic acid metabolism in intact T47D cells with an IC50-value of 8.7 nM. In addition, R116010 is a selective inhibitor as indicated by its inhibition profile for several other cytochrome P450-mediated reactions. In T47D cell proliferation assays, R116010 by itself has no effect on cell proliferation. However, in combination with all-trans-retinoic acid, R116010 enhances the all-trans-retinoic acid-mediated antiproliferative activity in a concentration-dependent manner. In vivo, the growth of murine oestrogen-independent TA3-Ha mammary tumours is significantly inhibited by R116010 at doses as low as 0.16 mg kg−1. In conclusion, R116010 is a highly potent and selective inhibitor of all-trans-retinoic acid metabolism, which is able to enhance the biological activity of all-trans-retinoic acid, thereby exhibiting antitumour activity. R116010 represents a novel and promising anticancer drug with an unique mechanism of action

    THE EFFECT OF SILYL SUBSTITUTED METHOTREXATE IN THE TREATMENT OF EXPERIMENTAL ALLERGIC ENCEPHALOMYELITIS IN RATS MEDIATED BY T-LINE CELLS

    No full text
    PRZUNTEK H, WESTARP ME, VOHL ML, GERLACH M, Jutzi P, WEKERLE H. THE EFFECT OF SILYL SUBSTITUTED METHOTREXATE IN THE TREATMENT OF EXPERIMENTAL ALLERGIC ENCEPHALOMYELITIS IN RATS MEDIATED BY T-LINE CELLS. NEUROPHARMACOLOGY. 1987;26(2-3):255-260
    corecore