189 research outputs found

    The Relevance of Breast Cancer Subtypes in the Outcome of Neoadjuvant Chemotherapy

    Get PDF
    BACKGROUND: Breast cancer is increasingly considered a heterogeneous disease. The aim of this study was to assess the differences between histological and receptor-based subtypes in breast-conserving surgery and pathological complete response (pCR) after neoadjuvant chemotherapy. METHOD: A consecutive series of 254 patients with operable breast cancer treated with neoadjuvant chemotherapy was analyzed. Tumors were classified according to their receptor status in estrogen receptor (ER)-positive tumors (HER2-negative), triple-negative tumors, and HER2-positive tumors. The type of surgery feasible prior to neoadjuvant chemotherapy was compared with the actual surgery performed. RESULTS: The overall increase in breast-conserving surgery was 37% (73 of 198). In patients with ductal and lobular carcinomas this increase was 41% (63 of 152, 95% confidence interval [95% CI] 0.34-0.49) and 20% (7 of 35, 95% CI 0.10-0.36), respectively (P = 0.02). Half of the patients with lobular carcinoma had to undergo a secondary mastectomy because of incomplete resection margins. In ER-positive, triple-negative and HER2-positive tumors, the increase in breast-conserving surgery was 39% (42 of 109, 95% CI 0.30-0.48), 24% (11 of 45, 95% CI 0.14-0.38), and 45% (20 of 44, 95% CI 0.32-0.60) (P = 0.11). The pCR rate in ductal and lobular carcinomas was 12% (23 of 195) and 2% (1 of 42), respectively (P = 0.09). In ER-positive, triple-negative and HER2-positive tumors the pCR rates were 2% (3 of 138), 28% (16 of 57), and 18% (10 of 56), respectively. Multivariate analysis showed that the receptor-based subtype was the only significant predictor of pCR (P = 0.004). CONCLUSION: In lobular tumors the benefit with regard to breast-conserving surgery of neoadjuvant chemotherapy is questionable. Although in ER-positive tumors the pCR rate is low, the increase in breast-conserving surgery was remarkable in ductal ER-positive tumor

    Correlation of microarray-based breast cancer molecular subtypes and clinical outcomes: implications for treatment optimization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Optimizing treatment through microarray-based molecular subtyping is a promising method to address the problem of heterogeneity in breast cancer; however, current application is restricted to prediction of distant recurrence risk. This study investigated whether breast cancer molecular subtyping according to its global intrinsic biology could be used for treatment customization.</p> <p>Methods</p> <p>Gene expression profiling was conducted on fresh frozen breast cancer tissue collected from 327 patients in conjunction with thoroughly documented clinical data. A method of molecular subtyping based on 783 probe-sets was established and validated. Statistical analysis was performed to correlate molecular subtypes with survival outcome and adjuvant chemotherapy regimens. Heterogeneity of molecular subtypes within groups sharing the same distant recurrence risk predicted by genes of the Oncotype and MammaPrint predictors was studied.</p> <p>Results</p> <p>We identified six molecular subtypes of breast cancer demonstrating distinctive molecular and clinical characteristics. These six subtypes showed similarities and significant differences from the Perou-Sørlie intrinsic types. Subtype I breast cancer was in concordance with chemosensitive basal-like intrinsic type. Adjuvant chemotherapy of lower intensity with CMF yielded survival outcome similar to those of CAF in this subtype. Subtype IV breast cancer was positive for ER with a full-range expression of HER2, responding poorly to CMF; however, this subtype showed excellent survival when treated with CAF. Reduced expression of a gene associated with methotrexate sensitivity in subtype IV was the likely reason for poor response to methotrexate. All subtype V breast cancer was positive for ER and had excellent long-term survival with hormonal therapy alone following surgery and/or radiation therapy. Adjuvant chemotherapy did not provide any survival benefit in early stages of subtype V patients. Subtype V was consistent with a unique subset of luminal A intrinsic type. When molecular subtypes were correlated with recurrence risk predicted by genes of Oncotype and MammaPrint predictors, a significant degree of heterogeneity within the same risk group was noted. This heterogeneity was distributed over several subtypes, suggesting that patients in the same risk groups require different treatment approaches.</p> <p>Conclusions</p> <p>Our results indicate that the molecular subtypes established in this study can be utilized for customization of breast cancer treatment.</p

    The functional cancer map: A systems-level synopsis of genetic deregulation in cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer cells are characterized by massive dysegulation of physiological cell functions with considerable disruption of transcriptional regulation. Genome-wide transcriptome profiling can be utilized for early detection and molecular classification of cancers. Accurate discrimination of functionally different tumor types may help to guide selection of targeted therapy in translational research. Concise grouping of tumor types in cancer maps according to their molecular profile may further be helpful for the development of new therapeutic modalities or open new avenues for already established therapies.</p> <p>Methods</p> <p>Complete available human tumor data of the Stanford Microarray Database was downloaded and filtered for relevance, adequacy and reliability. A total of 649 tumor samples from more than 1400 experiments and 58 different tissues were analyzed. Next, a method to score deregulation of KEGG pathway maps in different tumor entities was established, which was then used to convert hundreds of gene expression profiles into corresponding tumor-specific pathway activity profiles. Based on the latter, we defined a measure for functional similarity between tumor entities, which yielded to phylogeny of tumors.</p> <p>Results</p> <p>We provide a comprehensive, easy-to-interpret functional cancer map that characterizes tumor types with respect to their biological and functional behavior. Consistently, multiple pathways commonly associated with tumor progression were revealed as common features in the majority of the tumors. However, several pathways previously not linked to carcinogenesis were identified in multiple cancers suggesting an essential role of these pathways in cancer biology. Among these pathways were 'ECM-receptor interaction', 'Complement and Coagulation cascades', and 'PPAR signaling pathway'.</p> <p>Conclusion</p> <p>The functional cancer map provides a systematic view on molecular similarities across different cancers by comparing tumors on the level of pathway activity. This work resulted in identification of novel superimposed functional pathways potentially linked to cancer biology. Therefore, our work may serve as a starting point for rationalizing combination of tumor therapeutics as well as for expanding the application of well-established targeted tumor therapies.</p

    Relationship between IHC4 score and response to neo-adjuvant chemotherapy in estrogen receptor-positive breast cancer

    Get PDF
    To determine whether IHC4 score assessed on pre-treatment core biopsies (i) predicts response to neo-adjuvant chemotherapy in ER-positive (ER+) breast cancer; (ii) provides more predictive information than Ki67 alone. 113 patients with ER+ primary breast cancer treated with neo-adjuvant chemotherapy at the Royal Marsden Hospital between 2002 and 2010 were included in the study. Pathologic assessment of the excision specimen was made for residual disease. IHC4 was determined on pre-treatment core biopsies, blinded to clinical outcome, by immunohistochemistry using quantitative scoring of ER (H-score), PgR (%) and Ki67 (%). Determination of HER2 status was made by immunohistochemistry and fluorescent in situ hybridization for 2+ cases. IHC4 and Ki67 scores were tested for their association with pathological complete response (pCR) rate and residual cancer burden (RCB) score. 18 (16%) of the 113 patients and 8 (9%) of the 88 HER2-ve cases achieved pCR. Ki67 and IHC4 score were both positively associated with achievement of pCR (P < 10(-7) and P < 10(-9), respectively) and RCB0+1 (P < 10(-5) and P < 10(-9), respectively) following neo-adjuvant chemotherapy in all patients. Rates of pCR+RCB1 were 45 and 66% in the highest quartiles of Ki67 and IHC4 scores, respectively. In ER+HER2-ve cases, pCR+RCB1 rates were 35% and in the highest quartile of both Ki67 and IHC4. There were no pCRs in the lower half of IHC4 or Ki67 scores. IHC4 was strongly predictive of pCR or near pCR in ER+ breast cancers following neo-adjuvant chemotherapy. Ki67 was an important component of this predictive ability, but was not as predictive as IHC4
    • …
    corecore