233 research outputs found

    α-Syntrophin Modulates Myogenin Expression in Differentiating Myoblasts

    Get PDF
    α-Syntrophin is a scaffolding protein linking signaling proteins to the sarcolemmal dystrophin complex in mature muscle. However, α-syntrophin is also expressed in differentiating myoblasts during the early stages of muscle differentiation. In this study, we examined the relationship between the expression of α-syntrophin and myogenin, a key muscle regulatory factor.The absence of α-syntrophin leads to reduced and delayed myogenin expression. This conclusion is based on experiments using muscle cells isolated from α-syntrophin null mice, muscle regeneration studies in α-syntrophin null mice, experiments in Sol8 cells (a cell line that expresses only low levels of α-syntrophin) and siRNA studies in differentiating C2 cells. In primary cultured myocytes isolated from α-syntrophin null mice, the level of myogenin was less than 50% that from wild type myocytes (p<0.005) 40 h after differentiation induction. In regenerating muscle, the expression of myogenin in the α-syntrophin null muscle was reduced to approximately 25% that of wild type muscle (p<0.005). Conversely, myogenin expression is enhanced in primary cultures of myoblasts isolated from a transgenic mouse over-expressing α-syntrophin and in Sol8 cells transfected with a vector to over-express α-syntrophin. Moreover, we find that myogenin mRNA is reduced in the absence of α-syntrophin and increased by α-syntrophin over-expression. Immunofluorescence microscopy shows that α-syntrophin is localized to the nuclei of differentiating myoblasts. Finally, immunoprecipitation experiments demonstrate that α-syntrophin associates with Mixed-Lineage Leukemia 5, a regulator of myogenin expression.We conclude that α-syntrophin plays an important role in regulating myogenesis by modulating myogenin expression

    Positive psychology of Malaysian students: impacts of engagement, motivation, self-compassion and wellbeing on mental health

    Get PDF
    Malaysia plays a key role in education of the Asia Pacific, expanding its scholarly output rapidly. However, mental health of Malaysian students is challenging, and their help-seeking is low because of stigma. This study explored the relationships between mental health and positive psychological constructs (academic engagement, motivation, self-compassion, and wellbeing), and evaluated the relative contribution of each positive psychological construct to mental health in Malaysian students. An opportunity sample of 153 students completed the measures regarding these constructs. Correlation, regression, and mediation analyses were conducted. Engagement, amotivation, self-compassion, and wellbeing were associated with, and predicted large variance in mental health. Self-compassion was the strongest independent predictor of mental health among all the positive psychological constructs. Findings can imply the strong links between mental health and positive psychology, especially selfcompassion. Moreover, intervention studies to examine the effects of self-compassion training on mental health of Malaysian students appear to be warranted.N/

    Detection of macrolide and disinfectant resistance genes in clinical Staphylococcus aureus and coagulase-negative staphylococci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Staphylococcus aureus </it>and Coagulase-negative staphylococci (CoNS) are a major source of infections associated with indwelling medical devices. Many antiseptic agents are used in hygienic handwash to prevent nosocomial infections by Staphylococci. Our aim was to determine the antibiotic susceptibility and resistance to quaternary ammonium compound of 46 <it>S. aureus </it>strains and 71 CoNS.</p> <p>Methods</p> <p><it>S. aureus </it>(n = 46) isolated from auricular infection and CoNS (n = 71), 22 of the strains isolated from dialysis fluids and 49 of the strains isolated from needles cultures were investigated. Erythromycin resistance genes (<it>erm</it>A, <it>erm</it>B, <it>erm</it>C, <it>msr</it>A and <it>mef</it>) were analysed by multiplex PCR and disinfectant-resistant genes (<it>qac</it>A, <it>qac</it>B, and <it>qac</it>C) were studied by PCR-RFLP.</p> <p>Results</p> <p>The frequency of erythromycin resistance genes in <it>S. aureus </it>was: <it>erm</it>A+ 7.7%, <it>erm</it>B+ 13.7%, <it>erm</it>C+ 6% and <it>msr</it>A+ 10.2%. In addition, the number of positive isolates in CoNS was respectively <it>erm</it>A+ (9.4%), <it>erm</it>B+ (11.1%), <it>erm</it>C+ (27.4%), and <it>msr</it>A+ (41%). The MIC analyses revealed that 88 isolates (74%) were resistant to quaternary ammonium compound-based disinfectant benzalkonium chloride (BC). 56% of the BC-resistant staphylococcus isolates have at least one of the three resistant disinfectants genes (<it>qac</it>A, <it>qac</it>B and <it>qac</it>C). Nine strains (7.7%) among the CoNS species and two <it>S. aureus </it>strains (2%) harboured the three-<it>qac </it>genes. In addition, the <it>qac</it>C were detected in 41 strains.</p> <p>Conclusions</p> <p>Multi-resistant strains towards macrolide and disinfectant were recorded. The investigation of antibiotics and antiseptic-resistant CoNS may provide crucial information on the control of nosocomial infections.</p

    The Saccharomyces cerevisiae Histone Chaperone Rtt106 Mediates the Cell Cycle Recruitment of SWI/SNF and RSC to the HIR-Dependent Histone Genes

    Get PDF
    In Saccharomyces cerevisiae, three out of the four histone gene pairs (HTA1-HTB1, HHT1-HHF1, and HHT2-HHF2) are regulated by the HIR co-repressor complex. The histone chaperone Rtt106 has recently been shown to be present at these histone gene loci throughout the cell cycle in a HIR- and Asf1-dependent manner and involved in their transcriptional repression. The SWI/SNF and RSC chromatin remodeling complexes are both recruited to the HIR-dependent histone genes; SWI/SNF is required for their activation in S phase, whereas RSC is implicated in their repression outside of S phase. Even though their presence at the histone genes is dependent on the HIR complex, their specific recruitment has not been well characterized. In this study we focused on characterizing the role played by the histone chaperone Rtt106 in the cell cycle-dependent recruitment of SWI/SNF and RSC complexes to the histone genes.Using GST pull-down and co-immunoprecipitation assays, we showed that Rtt106 physically interacts with both the SWI/SNF and RSC complexes in vitro and in vivo. We then investigated the function of this interaction with respect to the recruitment of these complexes to HIR-dependent histone genes. Using chromatin immunoprecipitation assays (ChIP), we found that Rtt106 is important for the recruitment of both SWI/SNF and RSC complexes to the HIR-dependent histone genes. Furthermore, using synchronized cell cultures, we showed by ChIP assays that the Rtt106-dependent SWI/SNF recruitment to these histone gene loci is cell cycle regulated and restricted to late G1 phase just before the peak of histone gene expression in S phase.Overall, these data strongly suggest that the interaction between the histone chaperone Rtt106 and both the SWI/SNF and RSC chromatin remodeling complexes is important for the cell cycle regulated recruitment of these two complexes to the HIR-dependent histone genes

    Phosphorylation-Independent Regulation of Atf1-Promoted Meiotic Recombination by Stress-Activated, p38 Kinase Spc1 of Fission Yeast

    Get PDF
    BACKGROUND:Stress-activated protein kinases regulate multiple cellular responses to a wide variety of intracellular and extracellular conditions. The conserved, multifunctional, ATF/CREB protein Atf1 (Mts1, Gad7) of fission yeast binds to CRE-like (M26) DNA sites. Atf1 is phosphorylated by the conserved, p38-family kinase Spc1 (Sty1, Phh1) and is required for many Spc1-dependent stress responses, efficient sexual differentiation, and activation of Rec12 (Spo11)-dependent meiotic recombination hotspots like ade6-M26. METHODOLOGY/PRINCIPAL FINDINGS:We sought to define mechanisms by which Spc1 regulates Atf1 function at the ade6-M26 hotspot. The Spc1 kinase was essential for hotspot activity, but dispensable for basal recombination. Unexpectedly, a protein lacking all eleven MAPK phospho-acceptor sites and detectable phosphorylation (Atf1-11M) was fully proficient for hotspot recombination. Furthermore, tethering of Atf1 to ade6 in the chromosome by a heterologous DNA binding domain bypassed the requirement for Spc1 in promoting recombination. CONCLUSIONS/SIGNIFICANCE:The Spc1 protein kinase regulates the pathway of Atf1-promoted recombination at or before the point where Atf1 binds to chromosomes, and this pathway regulation is independent of the phosphorylation status of Atf1. Since basal recombination is Spc1-independent, the principal function of the Spc1 kinase in meiotic recombination is to correctly position Atf1-promoted recombination at hotspots along chromosomes. We also propose new hypotheses on regulatory mechanisms for shared (e.g., DNA binding) and distinct (e.g., osmoregulatory vs. recombinogenic) activities of multifunctional, stress-activated protein Atf1

    Leptospira interrogans Stably Infects Zebrafish Embryos, Altering Phagocyte Behavior and Homing to Specific Tissues

    Get PDF
    Leptospirosis is an extremely widespread zoonotic infection with outcomes ranging from subclinical infection to fatal Weil's syndrome. Despite the global impact of the disease, key aspects of its pathogenesis remain unclear. To examine in detail the earliest steps in the host response to leptospires, we used fluorescently labelled Leptospira interrogans serovar Copenhageni to infect 30 hour post fertilization zebrafish embryos by either the caudal vein or hindbrain ventricle. These embryos have functional innate immunity but have not yet developed an adaptive immune system. Furthermore, they are optically transparent, allowing direct visualization of host–pathogen interactions from the moment of infection. We observed rapid uptake of leptospires by phagocytes, followed by persistent, intracellular infection over the first 48 hours. Phagocytosis of leptospires occasionally resulted in formation of large cellular vesicles consistent with apoptotic bodies. By 24 hours, clusters of infected phagocytes were accumulating lateral to the dorsal artery, presumably in early hematopoietic tissue. Our observations suggest that phagocytosis may be a key defense mechanism in the early stages of leptospirosis, and that phagocytic cells play roles in immunopathogenesis and likely in the dissemination of leptospires to specific target tissues

    Absence of Aquaporin-4 in Skeletal Muscle Alters Proteins Involved in Bioenergetic Pathways and Calcium Handling

    Get PDF
    Aquaporin-4 (AQP4) is a water channel expressed at the sarcolemma of fast-twitch skeletal muscle fibers, whose expression is altered in several forms of muscular dystrophies. However, little is known concerning the physiological role of AQP4 in skeletal muscle and its functional and structural interaction with skeletal muscle proteome. Using AQP4-null mice, we analyzed the effect of the absence of AQP4 on the morphology and protein composition of sarcolemma as well as on the whole skeletal muscle proteome. Immunofluorescence analysis showed that the absence of AQP4 did not perturb the expression and cellular localization of the dystrophin-glycoprotein complex proteins, aside from those belonging to the extracellular matrix, and no alteration was found in sarcolemma integrity by dye extravasation assay. With the use of a 2DE-approach (BN/SDS-PAGE), protein maps revealed that in quadriceps, out of 300 Coomassie-blue detected and matched spots, 19 proteins exhibited changed expression in AQP4−/− compared to WT mice. In particular, comparison of the protein profiles revealed 12 up- and 7 down-regulated protein spots in AQP4−/− muscle. Protein identification by MS revealed that the perturbed expression pattern belongs to proteins involved in energy metabolism (i.e. GAPDH, creatine kinase), as well as in Ca2+ handling (i.e. parvalbumin, SERCA1). Western blot analysis, performed on some significantly changed proteins, validated the 2D results. Together these findings suggest AQP4 as a novel determinant in the regulation of skeletal muscle metabolism and better define the role of this water channel in skeletal muscle physiology
    corecore