16 research outputs found

    A realizability semantics for inductive formal topologies, church’s thesis and axiom of choice

    Get PDF
    We present a Kleene realizability semantics for the intensional level of the Minimalist Foundation, for short mtt, extended with inductively generated formal topologies, Church's thesis and axiom of choice. This semantics is an extension of the one used to show consistency of the intensional level of the Minimalist Foundation with the axiom of choice and formal Church's thesis in previous work. A main novelty here is that such a semantics is formalized in a constructive theory represented by Aczel's constructive set theory CZF extended with the regular extension axiom

    Inductive and Coinductive Topological Generation with Church's thesis and the Axiom of Choice

    Get PDF
    In this work we consider an extension MFcind of the Minimalist Foundation MF for predicative constructive mathematics with the addition of inductive and coinductive definitions sufficient to generate Sambin's Positive topologies, namely Martin-Löf-Sambin formal topologies equipped with a Positivity relation (used to describe pointfree formal closed subsets). In particular the intensional level of MFcind, called mTTcind, is defined by extending with coinductive definitions another theory mTTind extending the intensional level mTT of MF with the sole addition of inductive definitions. In previous work we have shown that mTTind is consistent with Formal Church's Thesis CT and the Axiom of Choice AC via an interpretation in Aczel's CZF+REA. Our aim is to show the expectation that the addition of coinductive definitions to mTTind does not increase its consistency strength by reducing the consistency of mTTcind+CT+AC to the consistency of CZF+REA through various interpretations. We actually reach our goal in two ways. One way consists in first interpreting mTTcind+CT+AC in the theory extending CZF with the Union Regular Extension Axiom, REA_U, a strengthening of REA, and the Axiom of Relativized Dependent Choice, RDC. The theory CZF+REA_U+RDC is then interpreted in MLS*, a version of Martin-Löf's type theory with Palmgren's superuniverse S. A last step consists in interpreting MLS* back into CZF+REA. The alternative way consists in first interpreting mTTcind+AC+CT directly in a version of Martin-Löf's type theory with Palmgren's superuniverse extended with CT, which is then interpreted back to CZF+REA. A key benefit of the first way is that the theory CZF+REA_U+RDC also supports the intended set-theoretic interpretation of the extensional level of MFcind. Finally, all the theories considered, except mTTcind+AC+CT, are shown to be of the same proof-theoretic strength

    Quotienting the Delay Monad by Weak Bisimilarity

    Get PDF
    The delay datatype was introduced by Capretta as a means to deal with partial functions (as in computability theory) in Martin-Löf type theory. It is a monad and it constitutes a constructive alternative to the maybe monad. It is often desirable to consider two delayed computations equal, if they terminate with equal values, whenever one of them terminates. The equivalence relation underlying this identification is called weak bisimilarity. In type theory, one commonly replaces quotients with setoids. In this approach, the delay monad quotiented by weak bisimilarity is still a monad. In this paper, we consider Hofmann's alternative approach of extending type theory with inductive-like quotient types. In this setting, it is difficult to define the intended monad multiplication for the quotiented datatype. We give a solution where we postulate some principles, crucially proposition extensionality and the (semi-classical) axiom of countable choice. We have fully formalized our results in the Agda dependently typed programming language

    Formalization of the classification pattern: Survey of classification modeling in information systems engineering

    Get PDF
    Formalization is becoming more common in all stages of the development of information systems, as a better understanding of its benefits emerges. Classification systems are ubiquitous, no more so than in domain modeling. The classification pattern that underlies these systems provides a good case study of the move towards formalization in part because it illustrates some of the barriers to formalization; including the formal complexity of the pattern and the ontological issues surrounding the ‘one and the many’. Powersets are a way of characterizing the (complex) formal structure of the classification pattern and their formalization has been extensively studied in mathematics since Cantor’s work in the late 19th century. One can use this formalization to develop a useful benchmark. There are various communities within Information Systems Engineering (ISE) that are gradually working towards a formalization of the classification pattern. However, for most of these communities this work is incomplete, in that they have not yet arrived at a solution with the expressiveness of the powerset benchmark. This contrasts with the early smooth adoption of powerset by other Information Systems communities to, for example, formalize relations. One way of understanding the varying rates of adoption is recognizing that the different communities have different historical baggage. Many conceptual modeling communities emerged from work done on database design and this creates hurdles to the adoption of the high level of expressiveness of powersets. Another relevant factor is that these communities also often feel, particularly in the case of domain modeling, a responsibility to explain the semantics of whatever formal structures they adopt. This paper aims to make sense of the formalization of the classification pattern in ISE and surveys its history through the literature; starting from the relevant theoretical works of the mathematical literature and gradually shifting focus to the ISE literature. The literature survey follows the evolution of ISE’s understanding of how to formalize the classification pattern. The various proposals are assessed using the classical example of classification; the Linnaean taxonomy formalized using powersets as a benchmark for formal expressiveness. The broad conclusion of the survey is that (1) the ISE community is currently in the early stages of the process of understanding how to formalize the classification pattern, particularly in the requirements for expressiveness exemplified by powersets and (2) that there is an opportunity to intervene and speed up the process of adoption by clarifying this expressiveness. Given the central place that the classification pattern has in domain modeling, this intervention has the potential to lead to significant improvements.The UK Engineering and Physical Sciences Research Council (grant EP/K009923/1)

    Elementary quotient completions, church\u2019s thesis, and partitioned assemblies

    Get PDF
    Hyland's effective topos offers an important realizability model for constructive mathematics in the form of a category whose internal logic validates Church's Thesis. It also contains a boolean full sub-quasitopos of "assemblies" where only a restricted form of Church's Thesis survives. In the present paper we compare the effective topos and the quasitopos of assemblies each as the elementary quotient completions of a Lawvere doctrine based on the partitioned assemblies. In that way we can explain why the two forms of Church's Thesis each category satisfies differ by the way each is inherited from specific properties of the doctrine which determines the elementary quotient completion
    corecore