8 research outputs found

    The HEPD particle detector of the CSES satellite mission for investigating seismo-associated perturbations of the Van Allen belts

    No full text
    CSES (China Seismo-Electromagnetic Satellite) is a mission developed by CNSA (Chinese National Space Administration) and ASI (Italian Space Agency), to investigate the near-Earth electromagnetic, plasma and particle environment, for studying the seismo-associated disturbances in the ionosphere-magnetosphere transition zone. The anthropogenic and electromagnetic noise, as well as the natural non-seismic electromagnetic emissions is mainly due to tropospheric activity. In particular, the mission aims to confirming the existence of possible temporal correlations between the occurrence of earthquakes for medium and strong magnitude and the observation in space of electromagnetic perturbations, plasma variations and precipitation of bursts with high-energy charged particles from the inner Van Allen belt. In this framework, the high energy particle detector (HEPD) of the CSES mission has been developed by the Italian LIMADOU Collaboration. HEPD is an advanced detector based on a tower of scintillators and a silicon tracker that provides good energy and angular resolution and a wide angular acceptance, for electrons of 3–100 MeV, protons of 30–200 MeV and light nuclei up to the oxygen. CSES satellite has been launched on February 2nd, 2018 from the Jiuquan Satellite Launch Center (China). © 2018, Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature

    The HEPD particle detector of the CSES satellite mission for investigating seismo-associated perturbations of the Van Allen belts

    No full text

    Evaluation of HPK n plus -p planar pixel sensors for the CMS Phase-2 upgrade

    No full text
    To cope with the challenging environment of the planned high luminosity upgrade of the Large Hadron Collider (HL-LHC), scheduled to start operation in 2029, CMS will replace its entire tracking system. The requirements for the tracker are largely determined by the long operation time of 10 years with an instantaneous peak luminosity of up to 7.5 x 1034 cm-2 s-1 in the ultimate performance scenario. Depending on the radial distance from the interaction point, the silicon sensors will receive a particle fluence corresponding to a non-ionising energy loss of up to ?eq = 3.5 x 1016 cm-2. This paper focuses on planar pixel sensor design and qualification up to a fluence of ?eq = 1.4 x 1016 cm-2. For the development of appropriate planar pixel sensors an R&D program was initiated, which includes n+-p sensors on 150 mm (6") wafers with an active thickness of 150 mu m with pixel sizes of 100 x 25 mu m2 and 50 x 50 mu m2 manufactured by Hamamatsu Photonics K.K. (HPK). Single chip modules with ROC4Sens and RD53A readout chips were made. Irradiation with protons and neutrons, as well was an extensive test beam campaign at DESY were carried out. This paper presents the investigation of various assemblies mainly with ROC4Sens readout chips. It demonstrates that multiple designs fulfil the requirements in terms of breakdown voltage, leakage current and efficiency. The single point resolution for 50 x 50 mu m2 pixels is measured as 4.0 mu m for non-irradiated samples, and 6.3 mu m after irradiation to ?eq = 7.2 x 1015 cm-2

    Strategies and performance of the CMS silicon tracker alignment during LHC Run 2

    No full text
    corecore