26 research outputs found
Phenolic compounds in young developing kiwifruit in relation to light exposure: Implications for fruit calcium accumulation
The interaction between light availability and the biosynthesis of phenolic compounds in fruit of kiwifruit (Actinidia deliciosa var. deliciosa, C.F. Liang et A. R. Ferguson) was investigated. Fruits were exposed either to natural light or were artificially shaded while growing on mature vines and were analysed weekly during the first 11 weeks of development. Phenols were identified and quantified by using High Performance Liquid Chromatography (HPLC). Results showed that the predominant phenolic compounds were hydroxycinnamic acids (HCAs), flavonols and the flavan 3-ol epicatechin. Calcium (Ca2+), the main mineral nutrient involved in fruit quality was also determined. Light significantly increased the accumulation of both phenols and Ca2+ into the fruit. This work expands the list of known phenolics in kiwifruit and provides a possible explanation for the seasonal pattern of Ca2+ import into the fruit. Results on light–phenol interaction being apparently beneficial for fruit Ca2+ accumulation, suggest that accurate canopy management could enhance fruit quality
Children's and adolescents' rising animal-source food intakes in 1990-2018 were impacted by age, region, parental education and urbanicity
Animal-source foods (ASF) provide nutrition for children and adolescents physical and cognitive development. Here, we use data from the Global Dietary Database and Bayesian hierarchical models to quantify global, regional and national ASF intakes between 1990 and 2018 by age group across 185 countries, representing 93% of the worlds child population. Mean ASF intake was 1.9 servings per day, representing 16% of children consuming at least three daily servings. Intake was similar between boys and girls, but higher among urban children with educated parents. Consumption varied by age from 0.6 at <1 year to 2.5 servings per day at 1519 years. Between 1990 and 2018, mean ASF intake increased by 0.5 servings per week, with increases in all regions except sub-Saharan Africa. In 2018, total ASF consumption was highest in Russia, Brazil, Mexico and Turkey, and lowest in Uganda, India, Kenya and Bangladesh. These findings can inform policy to address malnutrition through targeted ASF consumption programmes. (c) 2023, The Author(s)
Incident type 2 diabetes attributable to suboptimal diet in 184 countries
The global burden of diet-attributable type 2 diabetes (T2D) is not well established. This risk assessment model estimated T2D incidence among adults attributable to direct and body weight-mediated effects of 11 dietary factors in 184 countries in 1990 and 2018. In 2018, suboptimal intake of these dietary factors was estimated to be attributable to 14.1 million (95% uncertainty interval (UI), 13.814.4 million) incident T2D cases, representing 70.3% (68.871.8%) of new cases globally. Largest T2D burdens were attributable to insufficient whole-grain intake (26.1% (25.027.1%)), excess refined rice and wheat intake (24.6% (22.327.2%)) and excess processed meat intake (20.3% (18.323.5%)). Across regions, highest proportional burdens were in central and eastern Europe and central Asia (85.6% (83.487.7%)) and Latin America and the Caribbean (81.8% (80.183.4%)); and lowest proportional burdens were in South Asia (55.4% (52.160.7%)). Proportions of diet-attributable T2D were generally larger in men than in women and were inversely correlated with age. Diet-attributable T2D was generally larger among urban versus rural residents and higher versus lower educated individuals, except in high-income countries, central and eastern Europe and central Asia, where burdens were larger in rural residents and in lower educated individuals. Compared with 1990, global diet-attributable T2D increased by 2.6 absolute percentage points (8.6 million more cases) in 2018, with variation in these trends by world region and dietary factor. These findings inform nutritional priorities and clinical and public health planning to improve dietary quality and reduce T2D globally. (c) 2023, The Author(s)
High Dietary Magnesium Intake Is Associated with Low Insulin Resistance in the Newfoundland Population
Background
Magnesium plays a role in glucose and insulin homeostasis and evidence suggests that magnesium intake is associated with insulin resistance (IR). However, data is inconsistent and most studies have not adequately controlled for critical confounding factors.
Objective
The study investigated the association between magnesium intake and IR in normal-weight (NW), overweight (OW) and obese (OB) along with pre- and post- menopausal women.
Design
A total of 2295 subjects (590 men and 1705 women) were recruited from the CODING study. Dietary magnesium intake was computed from the Willett Food Frequency Questionnaire (FFQ). Adiposity (NW, OW and OB) was classified by body fat percentage (%BF) measured by Dual-energy X-ray absorptiometry according to the Bray criteria. Multiple regression analyses were used to test adiposity-specific associations of dietary magnesium intake on insulin resistance adjusting for caloric intake, physical activity, medication use and menopausal status.
Results
Subjects with the highest intakes of dietary magnesium had the lowest levels of circulating insulin, HOMA-IR, and HOMA-ß and subjects with the lowest intake of dietary magnesium had the highest levels of these measures, suggesting a dose effect. Multiple regression analysis revealed a strong inverse association between dietary magnesium with IR. In addition, adiposity and menopausal status were found to be critical factors revealing that the association between dietary magnesium and IR was stronger in OW and OB along with Pre-menopausal women.
Conclusion
The results of this study indicate that higher dietary magnesium intake is strongly associated with the attenuation of insulin resistance and is more beneficial for overweight and obese individuals in the general population and pre-menopausal women. Moreover, the inverse correlation between insulin resistance and dietary magnesium intake is stronger when adjusting for %BF than BMI