288 research outputs found

    Exposure to Fumonisins and the Occurrence of Neural Tube Defects along the Texas–Mexico Border

    Get PDF
    Along the Texas–Mexico border, the prevalence of neural tube defects (NTDs) among Mexican-American women doubled during 1990–1991. The human outbreak began during the same crop year as epizootics attributed to exposure to fumonisin, a mycotoxin that often contaminates corn. Because Mexican Americans in Texas consume large quantities of corn, primarily in the form of tortillas, they may be exposed to high levels of fumonisins. We examined whether or not maternal exposure to fumonisins increases the risk of NTDs in offspring using a population-based case–control study. We estimated fumonisin exposure from a postpartum sphinganine:sphingosine (sa:so) ratio, a biomarker for fumonisin exposure measured in maternal serum, and from maternal recall of periconceptional corn tortilla intake. After adjusting for confounders, moderate (301–400) compared with low (≤ 100) consumption of tortillas during the first trimester was associated with increased odds ratios (ORs) of having an NTD-affected pregnancy (OR = 2.4; 95% confidence interval, 1.1–5.3). No increased risks were observed at intakes higher than 400 tortillas (OR = 0.8 for 401–800, OR = 1.0 for > 800). Based on the postpartum sa:so ratio, increasing levels of fumonisin exposure were associated with increasing ORs for NTD occurrences, except for the highest exposure category (sa:so > 0.35). Our findings suggest that fumonisin exposure increases the risk of NTD, proportionate to dose, up to a threshold level, at which point fetal death may be more likely to occur. These results also call for population studies that can more directly measure individual fumonisin intakes and assess effects on the developing embryo

    The genomic basis of tumor regression in Tasmanian devils (Sarcophilus harrisii)

    Get PDF
    Understanding the genetic basis of disease-related phenotypes, such as cancer susceptibility, is crucial for the advancement of personalized medicine. Although most cancers are somatic in origin, a small number of transmissible cancers have been documented. Two such cancers have emerged in the Tasmanian devil (Sarcophilus harrisii) and now threaten the species with extinction. Recently, cases of natural tumor regression in Tasmanian devils infected with the clonally contagious cancer have been detected. We used whole-genome sequencing and FST-based approaches to identify the genetic basis of tumor regression by comparing the genomes of seven individuals that underwent tumor regression with those of three infected individuals that did not. We found three highly differentiated candidate genomic regions containing several genes related to immune response and/or cancer risk, indicating that the genomic basis of tumor regression was polygenic. Within these genomic regions, we identified putative regulatory variation in candidate genes but no nonsynonymous variation, suggesting that natural tumor regression may be driven, at least in part, by differential host expression of key loci. Comparative oncology can provide insight into the genetic basis of cancer risk, tumor development, and the pathogenicity of cancer, particularly due to our limited ability to monitor natural, untreated tumor progression in human patients. Our results support the hypothesis that host immune response is necessary for triggering tumor regression, providing candidate genes that may translate to novel treatments in human and nonhuman cancers

    Lime pretreatment of sugar beet pulp and evaluation of synergy between ArfA, ManA and XynA from Clostridium cellulovorans on the pretreated substrate

    Get PDF
    Sugar beet pulp (SBP) is a waste product from the sugar beet industry and could be used as a potential biomass feedstock for second generation biofuel technology. Pretreatment of SBP with ‘slake lime’ (calcium hydroxide) was investigated using a 23 factorial design and the factors examined included lime loading, temperature and time. The pretreatment was evaluated for its ability to enhance enzymatic degradation using a combination of three hemicellulases, namely ArfA (an arabinofuranosidase), ManA (an endo-mannanase) and XynA (an endo-xylanase) from C. cellulovorans to determine the conditions under which optimal activity was facilitated. Optimal pretreatment conditions were found to be 0.4 g lime/g SBP, with 36 h digestion at 40 °C. The synergistic interactions between ArfA, ManA and XynA from C. cellulovorans were subsequently investigated on the pretreated SBP. The highest degree of synergy was observed at a protein ratio of 75% ArfA to 25% ManA, with a specific activity of 2.9 U/g protein. However, the highest activity was observed at 4.2 U/g protein at 100% ArfA. This study demonstrated that lime treatment enhanced enzymatic hydrolysis of SBP. The ArfA was the most effective hemicellulase for release of sugars from pretreated SBP, but the synergy with the ManA indicated that low levels of mannan in SBP were probably masking the access of the ArfA to its substrate. XynA displayed no synergy with the other two hemicellulases, indicating that the xylan in the SBP was not hampering the access of ArfA or ManA to their substrates and was not closely associated with the mannan and arabinan in the SBP

    Sex-Differential Herbivory in Androdioecious Mercurialis annua

    Get PDF
    Males of plants with separate sexes are often more prone to attack by herbivores than females. A common explanation for this pattern is that individuals with a greater male function suffer more from herbivory because they grow more quickly, drawing more heavily on resources for growth that might otherwise be allocated to defence. Here, we test this ‘faster-sex’ hypothesis in a species in which males in fact grow more slowly than hermaphrodites, the wind-pollinated annual herb Mercurialis annua. We expected greater herbivory in the faster-growing hermaphrodites. In contrast, we found that males, the slower sex, were significantly more heavily eaten by snails than hermaphrodites. Our results thus reject the faster-sex hypothesis and point to the importance of a trade-off between defence and reproduction rather than growth

    Critical Early Roles for col27a1a and col27a1b in Zebrafish Notochord Morphogenesis, Vertebral Mineralization and Post-embryonic Axial Growth

    Get PDF
    Fibrillar collagens are well known for their links to human diseases, with which all have been associated except for the two most recently identified fibrillar collagens, type XXIV collagen and type XXVII collagen. To assess functions and potential disease phenotypes of type XXVII collagen, we examined its roles in zebrafish embryonic and post-embryonic development.We identified two type XXVII collagen genes in zebrafish, col27a1a and col27a1b. Both col27a1a and col27a1b were expressed in notochord and cartilage in the embryo and early larva. To determine sites of type XXVII collagen function, col27a1a and col27a1b were knocked down using morpholino antisense oligonucleotides. Knockdown of col27a1a singly or in conjunction with col27a1b resulted in curvature of the notochord at early stages and formation of scoliotic curves as well as dysmorphic vertebrae at later stages. These defects were accompanied by abnormal distributions of cells and protein localization in the notochord, as visualized by transmission electron microscopy, as well as delayed vertebral mineralization as detected histologically.Together, our findings indicate a key role for type XXVII collagen in notochord morphogenesis and axial skeletogenesis and suggest a possible human disease phenotype

    Increased Expression of PcG Protein YY1 Negatively Regulates B Cell Development while Allowing Accumulation of Myeloid Cells and LT-HSC Cells

    Get PDF
    Ying Yang 1 (YY1) is a multifunctional Polycomb Group (PcG) transcription factor that binds to multiple enhancer binding sites in the immunoglobulin (Ig) loci and plays vital roles in early B cell development. PcG proteins have important functions in hematopoietic stem cell renewal and YY1 is the only mammalian PcG protein with DNA binding specificity. Conditional knock-out of YY1 in the mouse B cell lineage results in arrest at the pro-B cell stage, and dosage effects have been observed at various YY1 expression levels. To investigate the impact of elevated YY1 expression on hematopoetic development, we utilized a mouse in vivo bone marrow reconstitution system. We found that mouse bone marrow cells expressing elevated levels of YY1 exhibited a selective disadvantage as they progressed from hematopoietic stem/progenitor cells to pro-B, pre-B, immature B and re-circulating B cell stages, but no disadvantage of YY1 over-expression was observed in myeloid lineage cells. Furthermore, mouse bone marrow cells expressing elevated levels of YY1 displayed enrichment for cells with surface markers characteristic of long-term hematopoietic stem cells (HSC). YY1 expression induced apoptosis in mouse B cell lines in vitro, and resulted in down-regulated expression of anti-apoptotic genes Bcl-xl and NFκB2, while no impact was observed in a mouse myeloid line. B cell apoptosis and LT-HSC enrichment induced by YY1 suggest that novel strategies to induce YY1 expression could have beneficial effects in the treatment of B lineage malignancies while preserving normal HSCs
    corecore