39 research outputs found

    Expression of caspases 3, 6 and 8 is increased in parallel with apoptosis and histological aggressiveness of the breast lesion

    Get PDF
    The aim of this investigation was to study the expression of caspases 3, 6 and 8 and their association to apoptosis in preneoplastic and neoplastic lesions of the breast. The material consisted of nine benign breast epithelial hyperplasias, 15 atypical hyperplasias, 74 in situ and 82 invasive carcinomas. The extent of apoptosis was assessed by the TUNEL method and caspase 3, 6 and 8 expression by immunohistochemistry with specific antibodies. Increased caspase 3 immunopositivity, as compared to staining of normal breast ductal epithelium, was seen in 22% of benign epithelial hyperplasias, 25% of atypical hyperplasias, 58% of in situ carcinomas and 90% of invasive carcinomas. The corresponding percentages for caspase 6 and 8 were 11%, 25%, 60%, 87% and 22%, 57%, 84%, 83% respectively. In high-grade in situ lesions there were significantly more cases with strong caspase 3, 6 and 8 immunoreactivity than in low- and intermediate-grade lesions (P = 0.0045, P = 0.049 and P = 0.0001 respectively). In invasive carcinomas, however, no association between a high tumour grade and caspase 3, 6 or 8 expression was found (P = 0.27, P = 0.26 and P = 0.69 respectively). The mean apoptotic index was 0.14 ± 0.14% in benign epithelial hyperplasias, 0.17 ± 0.12% in atypical hyperplasias, 0.61 ± 0.88% in in situ carcinomas and 0.94 ± 1.21% in invasive carcinomas. In all cases strong caspase 3, 6 and 8 positivity was significantly associated with the extent of apoptosis (P < 0.001, P = 0.015 and P = 0.050 respectively). The results show that synthesis of caspases 3, 6 and 8 is up-regulated in neoplastic breast epithelial cells in parallel to the increase in the apoptotic index and progression of the breast lesions. © 1999 Cancer Research Campaig

    Malignant mixed Mullerian tumors of the uterus: histopathological evaluation of cell cycle and apoptotic regulatory proteins

    Get PDF
    <p>Abstract</p> <p>Aim</p> <p>The aim of our study was to evaluate survival outcomes in malignant mixed Mullerian tumors (MMMT) of the uterus with respect to the role of cell cycle and apoptotic regulatory proteins in the carcinomatous and sarcomatous components.</p> <p>Methods</p> <p>23 cases of uterine MMMT identified from the Saskatchewan Cancer Agency (1970-1999) were evaluated. Immunohistochemical expression of Bad, Mcl-1, bcl-x, bak, mdm2, bax, p16, p21, p53, p27, EMA, Bcl-2, Ki67 and PCNA was correlated with clinico-pathological data including survival outcomes.</p> <p>Results</p> <p>Histopathological examination confirmed malignant epithelial component with homologous (12 cases) and heterologous (11 cases) sarcomatous elements. P53 was strongly expressed (70-95%) in 15 cases and negative in 5 cases. The average survival in the p53+ve cases was 3.56 years as opposed to 8.94 years in p53-ve cases. Overexpression of p16 and Mcl-1 were observed in patients with longer survival outcomes (> 2 years). P16 and p21 were overexpressed in the carcinomatous and sarcomatous elements respectively. Cyclin-D1 was focally expressed only in the carcinomatous elements.</p> <p>Conclusions</p> <p>Our study supports that a) cell cycle and apoptotic regulatory protein dysregulation is an important pathway for tumorigenesis and b) p53 is an important immunoprognostic marker in MMMT of the uterus.</p

    The circadian clock coordinates ribosome biogenesis.

    Get PDF
    Biological rhythms play a fundamental role in the physiology and behavior of most living organisms. Rhythmic circadian expression of clock-controlled genes is orchestrated by a molecular clock that relies on interconnected negative feedback loops of transcription regulators. Here we show that the circadian clock exerts its function also through the regulation of mRNA translation. Namely, the circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator directly regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis
    corecore