78 research outputs found

    Accuracy and cost-effectiveness of dynamic contrast-enhanced CT in the characterisation of solitary pulmonary nodules — the SPUtNIk study

    Get PDF
    Introduction:\textbf{Introduction:} Solitary pulmonary nodules (SPNs) are common on CT. The most cost-effective investigation algorithm is still to be determined. Dynamic contrastenhanced CT (DCE-CT) is an established diagnostic test not widely available in the UK currently. Methods and analysis:\textbf{Methods and analysis:} The SPUtNIk study will assess the diagnostic accuracy, clinical utility and cost-effectiveness of DCE-CT, alongside the current CT and 18-flurodeoxyglucose-positron emission tomography) (18^{18}FDG-PET)-CT nodule characterisation strategies in the National Health Service (NHS). Image acquisition and data analysis for 18^{18}FDG-PET-CT and DCE-CT will follow a standardised protocol with central review of 10% to ensure quality assurance. Decision analytic modelling will assess the likely costs and health outcomes resulting from incorporation of DCE-CT into management strategies for patients with SPNs. Ethics and dissemination:\textbf{Ethics and dissemination:} Approval has been granted by the South West Research Ethics Committee. Ethics reference number 12/SW/0206. The results of the trial will be presented at national and international meetings and published in an Health Technology Assessment (HTA) Monograph and in peer-reviewed journals.The trial is funded by the National Institute for Health Research HTA Programme (grant no: 09/22/117) and is being run by Southampton Clinical Trials Unit, directed by Professor Gareth Griffiths and part funded by Cancer Research UK. NRQ and RCR are part funded by the Cambridge Biomedical Research Centre and the Cancer Research Network: Eastern

    Systematic NMR Analysis of Stable Isotope Labeled Metabolite Mixtures in Plant and Animal Systems: Coarse Grained Views of Metabolic Pathways

    Get PDF
    BACKGROUND: Metabolic phenotyping has become an important 'bird's-eye-view' technology which can be applied to higher organisms, such as model plant and animal systems in the post-genomics and proteomics era. Although genotyping technology has expanded greatly over the past decade, metabolic phenotyping has languished due to the difficulty of 'top-down' chemical analyses. Here, we describe a systematic NMR methodology for stable isotope-labeling and analysis of metabolite mixtures in plant and animal systems. METHODOLOGY/PRINCIPAL FINDINGS: The analysis method includes a stable isotope labeling technique for use in living organisms; a systematic method for simultaneously identifying a large number of metabolites by using a newly developed HSQC-based metabolite chemical shift database combined with heteronuclear multidimensional NMR spectroscopy; Principal Components Analysis; and a visualization method using a coarse-grained overview of the metabolic system. The database contains more than 1000 (1)H and (13)C chemical shifts corresponding to 142 metabolites measured under identical physicochemical conditions. Using the stable isotope labeling technique in Arabidopsis T87 cultured cells and Bombyx mori, we systematically detected >450 HSQC peaks in each (13)C-HSQC spectrum derived from model plant, Arabidopsis T87 cultured cells and the invertebrate animal model Bombyx mori. Furthermore, for the first time, efficient (13)C labeling has allowed reliable signal assignment using analytical separation techniques such as 3D HCCH-COSY spectra in higher organism extracts. CONCLUSIONS/SIGNIFICANCE: Overall physiological changes could be detected and categorized in relation to a critical developmental phase change in B. mori by coarse-grained representations in which the organization of metabolic pathways related to a specific developmental phase was visualized on the basis of constituent changes of 56 identified metabolites. Based on the observed intensities of (13)C atoms of given metabolites on development-dependent changes in the 56 identified (13)C-HSQC signals, we have determined the changes in metabolic networks that are associated with energy and nitrogen metabolism

    Targeting cancer metabolism: a therapeutic window opens

    Get PDF
    Genetic events in cancer activate signalling pathways that alter cell metabolism. Clinical evidence has linked cell metabolism with cancer outcomes. Together, these observations have raised interest in targeting metabolic enzymes for cancer therapy, but they have also raised concerns that these therapies would have unacceptable effects on normal cells. However, some of the first cancer therapies that were developed target the specific metabolic needs of cancer cells and remain effective agents in the clinic today. Research into how changes in cell metabolism promote tumour growth has accelerated in recent years. This has refocused efforts to target metabolic dependencies of cancer cells as a selective anticancer strategy.Burroughs Wellcome FundSmith Family FoundationStarr Cancer ConsortiumDamon Runyon Cancer Research FoundationNational Institutes of Health (U.S.

    Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research

    Get PDF
    Mass spectrometry (MS) techniques, because of their sensitivity and selectivity, have become methods of choice to characterize the human metabolome and MS-based metabolomics is increasingly used to characterize the complex metabolic effects of nutrients or foods. However progress is still hampered by many unsolved problems and most notably the lack of well established and standardized methods or procedures, and the difficulties still met in the identification of the metabolites influenced by a given nutritional intervention. The purpose of this paper is to review the main obstacles limiting progress and to make recommendations to overcome them. Propositions are made to improve the mode of collection and preparation of biological samples, the coverage and quality of mass spectrometry analyses, the extraction and exploitation of the raw data, the identification of the metabolites and the biological interpretation of the results

    Tissue adhesives for meniscus tear repair: an overview of current advances and prospects for future clinical solutions

    Full text link

    A survey for the rare blood group antigen variants, En(a-), Gerbich negative and Duffy negative on Espiritu Santo, Vanuatu in the South Pacific.

    No full text
    The people of Vanuatu exhibit several different genetic red cell polymorphisms. Some of these, such as alpha thalassaemia, are thought to have reached a high frequency as a result of selection pressure by malaria. In this study three rare blood group antigen variants, En(a-), Gerbich negative and Duffy negative, which are thought to confer a protective effect against malaria were sought in a sample of 214 (187 in the case of Duffy) from Espiritu Santo, Vanuatu. No individuals bearing these rare variants were found. The original settlers in Vanuatu are thought to have migrated from Papua New Guinea some 5,000 years ago, so it is of interest to note that no individuals were found to be Gerbich negative despite a high frequency in Melanesians living on some coastal parts of Papua New Guinea

    A Clinical Prediction Rule for the Severity of Congenital Diaphragmatic Hernias in Newborns

    No full text
    BACKGROUND: Congenital diaphragmatic hernia (CDH) is a condition with a highly variable outcome. Some infants have a relatively mild disease process, whereas others have significant pulmonary hypoplasia and hypertension. Identifying high-risk infants postnatally may allow for targeted therapy. METHODS: Data were obtained on 2202 infants from the Congenital Diaphragmatic Hernia Study Group database from January 2007 to October 2011. Using binary baseline predictors generated from birth weight, 5-minute Apgar score, congenital heart anomalies, and chromosome anomalies, as well as echocardiographic evidence of pulmonary hypertension, a clinical prediction rule was developed on a randomly selected subset of the data by using a backward selection algorithm. An integer-based clinical prediction rule was created. The performance of the model was validated by using the remaining data in terms of calibration and discrimination. RESULTS: The final model included the following predictors: very low birth weight, absent or low 5-minute Apgar score, presence of chromosomal or major cardiac anomaly, and suprasystemic pulmonary hypertension. This model discriminated between a population at high risk of death (similar to 50%) intermediate risk (similar to 20%), or low risk (<10%). The model performed well, with a C statistic of 0.806 in the derivation set and 0.769 in the validation set and good calibration (Hosmer-Lemeshow test, P = .2). CONCLUSIONS: A simple, generalizable scoring system was developed for CDH that can be calculated rapidly at the bedside. Using this model, intermediate-and high-risk infants could be selected for transfer to high-volume centers while infants at highest risk could be considered for advanced medical therapies
    corecore