11 research outputs found

    Populations of planets in multiple star systems

    Full text link
    Astronomers have discovered that both planets and binaries are abundant throughout the Galaxy. In combination, we know of over 100 planets in binary and higher-order multi-star systems, in both circumbinary and circumstellar configurations. In this chapter we review these findings and some of their implications for the formation of both stars and planets. Most of the planets found have been circumstellar, where there is seemingly a ruinous influence of the second star if sufficiently close (<50 AU). Hosts of hot Jupiters have been a particularly popular target for binary star studies, showing an enhanced rate of stellar multiplicity for moderately wide binaries (>100 AU). This was thought to be a sign of Kozai-Lidov migration, however recent studies have shown this mechanism to be too inefficient to account for the majority of hot Jupiters. A couple of dozen circumbinary planets have been proposed around both main sequence and evolved binaries. Around main sequence binaries there are preliminary indications that the frequency of gas giants is as high as those around single stars. There is however a conspicuous absence of circumbinary planets around the tightest main sequence binaries with periods of just a few days, suggesting a unique, more disruptive formation history of such close stellar pairs.Comment: Invited review chapter, accepted for publication in "Handbook of Exoplanets", ed. H. Deeg & J. A. Belmont

    Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts

    Get PDF
    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2‱−, generate Al superoxides [Al(O2‱)](H2O5)]+ 2. Semireduced AlO2‱ radicals deplete mitochondrial Fe and promote generation of H2O2, O2 ‱ − and OH‱. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances

    Can intervals enhance the inflammatory response and enjoyment in upper-body exercise?

    Get PDF
    This is an Open Access Article. It is published by Springer under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/Purpose To investigate the inflammatory and perceptual responses to three different forms of upper-body exercise. Methods Twelve recreationally active, able-bodied males performed three work-matched arm-crank sessions in a randomised order: 30 min moderate-intensity continuous (CON), 30 min moderate-intensity with changes in cadence (CAD) and 20 min high-intensity interval training (HIIT). Blood samples were taken pre, post and 2-h post-exercise to determine plasma concentrations of interleukin (IL)-6 and IL-1ra. Perceptual responses pre, during and following the trials were assessed using the Feeling Scale, Felt Arousal Scale, Ratings of Perceived Exertion (RPE) and the Physical Activity Enjoyment Scale (PACES). Results All trials were evenly effective in inducing an acute inflammatory response, indicated by similar increases in IL-6 after exercise and in IL-1ra at 2-h post exercise for all trials. More negative affect and higher RPE were reported during HIIT compared to CON and CAD, whereas PACES scores reported after exercise were higher for HIIT and CAD compared to CON. Conclusions When matched for external work, there was no difference in the inflammatory response to HIIT compared to moderate-intensity upper-body exercise. Although HIIT was (perceived as) more strenuous and affective responses were more negative during this mode, the higher ratings of enjoyment for both HIIT and CAD reported after exercise suggest that the inclusion of variation enhances enjoyment in upper-body exercise. As the fashion in which upper-body exercise is performed does not seem to influence the inflammatory response, it might be advised to prescribe varied exercise to enhance its enjoyment

    Crystallization of soluble proteins in vapor diffusion for x-ray crystallography

    Get PDF
    The preparation of protein single crystals represents one of the major obstacles in obtaining the detailed 3D structure of a biological macromolecule. The complete automation of the crystallization procedures requires large investments in terms of money and labor, which are available only to large dedicated infrastructures and is mostly suited for genomic-scale projects. On the other hand, many research projects from departmental laboratories are devoted to the study of few specific proteins. Here, we try to provide a series of protocols for the crystallization of soluble proteins, especially the difficult ones, tailored for small-scale research groups. An estimate of the time needed to complete each of the steps described can be found at the end of each section

    Identifying the Enzymatic Mode of Action for Cellulase Enzymes by Means of Docking Calculations and a Machine Learning Algorithm

    No full text
    corecore