781 research outputs found
Skyrmion Multi-Walls
Skyrmion walls are topologically-nontrivial solutions of the Skyrme system
which are periodic in two spatial directions. We report numerical
investigations which show that solutions representing parallel multi-walls
exist. The most stable configuration is that of the square -wall, which in
the limit becomes the cubically-symmetric Skyrme crystal. There is
also a solution resembling parallel hexagonal walls, but this is less stable.Comment: 7 pages, 1 figur
Exploring T and S parameters in Vector Meson Dominance Models of Strong Electroweak Symmetry Breaking
We revisit the electroweak precision tests for Higgsless models of strong
EWSB. We use the Vector Meson Dominance approach and express S and T via
couplings characterizing vector and axial spin-1 resonances of the strong
sector. These couplings are constrained by the elastic unitarity and by
requiring a good UV behavior of various formfactors. We pay particular
attention to the one-loop contribution of resonances to T (beyond the chiral
log), and to how it can improve the fit. We also make contact with the recent
studies of Conformal Technicolor. We explain why the second Weinberg sum rule
never converges in these models, and formulate a condition necessary for
preserving the custodial symmetry in the IR.Comment: 35 pages, 7 figures; v3: refs added, to appear in JHE
One Loop Renormalization of the Littlest Higgs Model
In Little Higgs models a collective symmetry prevents the Higgs from
acquiring a quadratically divergent mass at one loop. This collective symmetry
is broken by weakly gauged interactions. Terms, like Yukawa couplings, that
display collective symmetry in the bare Lagrangian are generically renormalized
into a sum of terms that do not respect the collective symmetry except possibly
at one renormalization point where the couplings are related so that the
symmetry is restored. We study here the one loop renormalization of a
prototypical example, the Littlest Higgs Model. Some features of the
renormalization of this model are novel, unfamiliar form similar chiral
Lagrangian studies.Comment: 23 pages, 17 eps figure
Hitting sbottom in natural SUSY
We compare the experimental prospects of direct stop and sbottom pair
production searches at the LHC. Such searches for stops are of great interest
as they directly probe for states that are motivated by the SUSY solution to
the hierarchy problem of the Higgs mass parameter - leading to a "Natural" SUSY
spectrum. Noting that sbottom searches are less experimentally challenging and
scale up in reach directly with the improvement on b-tagging algorithms, we
discuss the interplay of small TeV scale custodial symmetry violation with
sbottom direct pair production searches as a path to obtaining strong sub-TeV
constraints on stops in a natural SUSY scenario. We argue that if a weak scale
natural SUSY spectrum does not exist within the reach of LHC, then hopes for
such a spectrum for large regions of parameter space should sbottom out.
Conversely, the same arguments make clear that a discovery of such a spectrum
is likely to proceed in a sbottom up manner.Comment: 18 pages, 8 figures,v2 refs added, JHEP versio
Tuning supersymmetric models at the LHC: A comparative analysis at two-loop level
We provide a comparative study of the fine tuning amount (Delta) at the
two-loop leading log level in supersymmetric models commonly used in SUSY
searches at the LHC. These are the constrained MSSM (CMSSM), non-universal
Higgs masses models (NUHM1, NUHM2), non-universal gaugino masses model (NUGM)
and GUT related gaugino masses models (NUGMd). Two definitions of the fine
tuning are used, the first (Delta_{max}) measures maximal fine-tuning wrt
individual parameters while the second (Delta_q) adds their contribution in
"quadrature". As a direct result of two theoretical constraints (the EW minimum
conditions), fine tuning (Delta_q) emerges as a suppressing factor (effective
prior) of the averaged likelihood (under the priors), under the integral of the
global probability of measuring the data (Bayesian evidence p(D)). For each
model, there is little difference between Delta_q, Delta_{max} in the region
allowed by the data, with similar behaviour as functions of the Higgs, gluino,
stop mass or SUSY scale (m_{susy}=(m_{\tilde t_1} m_{\tilde t_2})^{1/2}) or
dark matter and g-2 constraints. The analysis has the advantage that by
replacing any of these mass scales or constraints by their latest bounds one
easily infers for each model the value of Delta_q, Delta_{max} or vice versa.
For all models, minimal fine tuning is achieved for M_{higgs} near 115 GeV with
a Delta_q\approx Delta_{max}\approx 10 to 100 depending on the model, and in
the CMSSM this is actually a global minimum. Due to a strong (
exponential) dependence of Delta on M_{higgs}, for a Higgs mass near 125 GeV,
the above values of Delta_q\approx Delta_{max} increase to between 500 and
1000. Possible corrections to these values are briefly discussed.Comment: 23 pages, 46 figures; references added; some clarifications (section
2
On the effect of resonances in composite Higgs phenomenology
We consider a generic composite Higgs model based on the coset SO(5)/SO(4)
and study its phenomenology beyond the leading low-energy effective lagrangian
approximation. Our basic goal is to introduce in a controllable and simple way
the lowest-lying, possibly narrow, resonances that may exist is such models. We
do so by proposing a criterion that we call partial UV completion. We
characterize the simplest cases, corresponding respectively to a scalar in
either singlet or tensor representation of SO(4) and to vectors in the adjoint
of SO(4). We study the impact of these resonances on the signals associated to
high-energy vector boson scattering, pointing out for each resonance the
characteristic patterns of depletion and enhancement with respect to the
leading-order chiral lagrangian. En route we derive the O(p^4) general chiral
lagrangian and discuss its peculiar accidental and approximate symmetries.Comment: v3: a few typos corrected. Conclusions unchange
Composite GUTs: models and expectations at the LHC
We investigate grand unified theories (GUTs) in scenarios where electroweak
(EW) symmetry breaking is triggered by a light composite Higgs, arising as a
Nambu-Goldstone boson from a strongly interacting sector. The evolution of the
standard model (SM) gauge couplings can be predicted at leading order, if the
global symmetry of the composite sector is a simple group G that contains the
SM gauge group. It was noticed that, if the right-handed top quark is also
composite, precision gauge unification can be achieved. We build minimal
consistent models for a composite sector with these properties, thus
demonstrating how composite GUTs may represent an alternative to supersymmetric
GUTs. Taking into account the new contributions to the EW precision parameters,
we compute the Higgs effective potential and prove that it realizes
consistently EW symmetry breaking with little fine-tuning. The G group
structure and the requirement of proton stability determine the nature of the
light composite states accompanying the Higgs and the top quark: a coloured
triplet scalar and several vector-like fermions with exotic quantum numbers. We
analyse the signatures of these composite partners at hadron colliders:
distinctive final states contain multiple top and bottom quarks, either alone
or accompanied by a heavy stable charged particle, or by missing transverse
energy.Comment: 55 pages, 13 figures, final version to be published in JHE
Model-Independent Bounds on a Light Higgs
We present up-to-date constraints on a generic Higgs parameter space. An
accurate assessment of these exclusions must take into account statistical, and
potentially signal, fluctuations in the data currently taken at the LHC. For
this, we have constructed a straightforward statistical method for making full
use of the data that is publicly available. We show that, using the expected
and observed exclusions which are quoted for each search channel, we can fully
reconstruct likelihood profiles under very reasonable and simple assumptions.
Even working with this somewhat limited information, we show that our method is
sufficiently accurate to warrant its study and advocate its use over more naive
prescriptions. Using this method, we can begin to narrow in on the remaining
viable parameter space for a Higgs-like scalar state, and to ascertain the
nature of any hints of new physics---Higgs or otherwise---appearing in the
data.Comment: 32 pages, 10 figures; v3: correction made to basis of four-derivative
operators in the effective Lagrangian, references adde
Composite Higgs Sketch
The coupling of a composite Higgs to the standard model fields can deviate
substantially from the standard model values. In this case perturbative
unitarity might break down before the scale of compositeness is reached, which
would suggest that additional composites should lie well below this scale. In
this paper we account for the presence of an additional spin 1 custodial
triplet of rhos. We examine the implications of requiring perturbative
unitarity up to the compositeness scale and find that one has to be close to
saturating certain unitarity sum rules involving the Higgs and the rho
couplings. Given these restrictions on the parameter space we investigate the
main phenomenological consequences of the spin 1 triplet. We find that they can
substantially enhance the Higgs di-photon rate at the LHC even with a reduced
Higgs coupling to gauge bosons. The main existing LHC bounds arise from
di-boson searches, especially in the experimentally clean channel where the
charged rhos decay to a W-boson and a Z, which then decay leptonically. We find
that a large range of interesting parameter space with 700 GeV < m(rho) < 2 TeV
is currently experimentally viable.Comment: 37 pages, 12 figures; v4: sum rule corrected, conclusions unchange
Flavor Phenomenology in General 5D Warped Spaces
We have considered a general 5D warped model with SM fields propagating in
the bulk and computed explicit expressions for oblique and non-oblique
electroweak observables as well as for flavor and CP violating effective
four-fermion operators. We have compared the resulting lower bounds on the
Kaluza-Klein (KK) scale in the RS model and a recently proposed model with a
metric modified towards the IR brane, which is consistent with oblique
parameters without the need for a custodial symmetry. We have randomly
generated 40,000 sets of O(1) 5D Yukawa couplings and made a fit of the quark
masses and CKM matrix elements in both models. This method allows to identify
the percentage of points consistent with a given KK mass, which in turn
provides us with a measure for the required fine-tuning. Comparison with
current experimental data on Rb, FCNC and CP violating operators exhibits an
improved behavior of our model with respect to the RS model. In particular,
allowing 10% fine-tuning the combined results point towards upper bounds on the
KK gauge boson masses around 3.3 TeV in our model as compared with 13 TeV in
the RS model. One reason for this improvement is that fermions in our model are
shifted, with respect to fermions in the RS model, towards the UV brane thus
decreasing the strength of the modifications of electroweak observables.Comment: 28 pages, 7 figures, 4 table
- …
