18 research outputs found
Advanced wastewater treatment and membrane fouling control by electro-encapsulated self-forming dynamic membrane bioreactor
An advanced concept of aerobic membrane bioreactors (MBRs) for highly efficient wastewater treatment has been disclosed by introduction of an electro and encapsulated self-forming dynamic biomembrane (e-ESFDM). The biological filtering membrane is intercalated between two woven polyester fabrics as supports that assist the formation and protect the biomembrane. The innovative architecture of the e-ESFDM in combination with electrocoagulation processes resulted in efficient and cost-effective wastewater treatment and control of the membrane fouling. The performance of the e-ESFDMBR was compared to a yet highly efficient ESFDMBR, where the electric field was not present. The ESFDM-based reactors both showed comparable results in the removal of organic matter, in terms of COD and DOC. On the other hand, e-ESFDMBR exceeded the performance of the ESFDMBR in the reduction of nitrogen- and phosphorous-containing pollutants, responsible for eutrophication processes in the environment, and recalcitrant molecules, such as humic-like substances. In addition, an extremely low fouling rate was observed for the e-ESFDM bioreactor. Insights on the biological processes involved in the developed MBR were provided by investigations on the microbiological diversity found in reactor mixed liquor, ESFDM layer and treated wastewater