82 research outputs found
The Effect of Tantalum Incorporation on the Physical and Chemical Properties of Ternary Silicon–calcium–phosphorous Mesoporous Bioactive Glasses
Synthesis and characterization of the first mesoporous bioactive glasses (MBGs) containing tantalum are reported here, along with their potential application as hemostats. Silica MBGs were synthesized using with the molar composition of (80-x)% Si, 15% Ca, 5% P, and x% Ta. It was found that incorporation of \u3e1 mol % Ta into the MBGs changes their physical and chemical properties. Increasing Ta content from 0 to 10 mol % causes a decrease in the surface area and pore volume of ~20 and ~35%, respectively. This is due to the increase in nonbridging oxygens and mismatch of thermal expansion coefficient which created discontinuities in the ordered channel structure. However, the effect is not significant on the amount of ions (Si, Ca, P, and Ta) released, from the sample into deionized water, for short durations (\u3c60 \u3emin). In a mouse tail-cut model, a significant decrease in bleeding time (≥50% of average bleeding time) was found for Ta-MBGs compared to having no treatment, Arista, and MBG without Ta. Further studies are proposed to determine the mechanism of Ta involvement with the hemostatic process. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2229–2237, 2019
The <i>N</i>-myristoylome of <i>Trypanosoma cruzi</i>
Protein N-myristoylation is catalysed by N-myristoyltransferase (NMT), an essential and druggable target in Trypanosoma cruzi, the causative agent of Chagas’ disease. Here we have employed whole cell labelling with azidomyristic acid and click chemistry to identify N-myristoylated proteins in different life cycle stages of the parasite. Only minor differences in fluorescent-labelling were observed between the dividing forms (the insect epimastigote and mammalian amastigote stages) and the non-dividing trypomastigote stage. Using a combination of label-free and stable isotope labelling of cells in culture (SILAC) based proteomic strategies in the presence and absence of the NMT inhibitor DDD85646, we identified 56 proteins enriched in at least two out of the three experimental approaches. Of these, 6 were likely to be false positives, with the remaining 50 commencing with amino acids MG at the N-terminus in one or more of the T. cruzi genomes. Most of these are proteins of unknown function (32), with the remainder (18) implicated in a diverse range of critical cellular and metabolic functions such as intracellular transport, cell signalling and protein turnover. In summary, we have established that 0.43–0.46% of the proteome is N-myristoylated in T. cruzi approaching that of other eukaryotic organisms (0.5–1.7%)
New Zealand blackcurrant extract enhances fat oxidation during prolonged cycling in endurance-trained females.
PURPOSE: New Zealand blackcurrant (NZBC) extract has previously been shown to increase fat oxidation during prolonged exercise, but this observation is limited to males. We examined whether NZBC intake also increases fat oxidation during prolonged exercise in females, and whether this was related to greater concentrations of circulating fatty acids. METHODS: In a randomised, crossover, double-blind design, 16 endurance-trained females (age: 28 ± 8 years, BMI: 21.3 ± 2.1 kg·m-2, VO2max: 43.7 ± 1.1 ml·kg-1·min-1) ingested 600 mg·day-1NZBC extract (CurraNZ™) or placebo (600 mg·day-1microcrystalline cellulose) for 7 days. On day 7, participants performed 120 min cycling at 65% VO2max, using online expired air sampling with blood samples collected at baseline and at 15 min intervals throughout exercise for analysis of glucose, NEFA and glycerol. RESULTS: NZBC extract increased mean fat oxidation by 27% during 120 min moderate-intensity cycling compared to placebo (P = 0.042), and mean carbohydrate oxidation tended to be lower (P = 0.063). Pre-exercise, plasma NEFA (P = 0.034) and glycerol (P = 0.051) concentrations were greater following NZBC intake, although there was no difference between conditions in the exercise-induced increase in plasma NEFA and glycerol concentrations (P > 0.05). Mean fat oxidation during exercise was moderately associated with pre-exercise plasma NEFA concentrations (r = 0.45, P = 0.016). CONCLUSIONS: Intake of NZBC extract for 7 days elevated resting concentrations of plasma NEFA and glycerol, indicative of higher lipolytic rates, and this may underpin the observed increase in fat oxidation during prolonged cycling in endurance-trained females
Transcriptomic profiling of host-parasite interactions in the microsporidian <i>Trachipleistophora hominis</i>
BACKGROUND: Trachipleistophora hominis was isolated from an HIV/AIDS patient and is a member of a highly successful group of obligate intracellular parasites. METHODS: Here we have investigated the evolution of the parasite and the interplay between host and parasite gene expression using transcriptomics of T. hominis-infected rabbit kidney cells. RESULTS: T. hominis has about 30Â % more genes than small-genome microsporidians. Highly expressed genes include those involved in growth, replication, defence against oxidative stress, and a large fraction of uncharacterised genes. Chaperones are also highly expressed and may buffer the deleterious effects of the large number of non-synonymous mutations observed in essential T. hominis genes. Host expression suggests a general cellular shutdown upon infection, but ATP, amino sugar and nucleotide sugar production appear enhanced, potentially providing the parasite with substrates it cannot make itself. Expression divergence of duplicated genes, including transporters used to acquire host metabolites, demonstrates ongoing functional diversification during microsporidian evolution. We identified overlapping transcription at more than 100 loci in the sparse T. hominis genome, demonstrating that this feature is not caused by genome compaction. The detection of additional transposons of insect origin strongly suggests that the natural host for T. hominis is an insect. CONCLUSIONS: Our results reveal that the evolution of contemporary microsporidian genomes is highly dynamic and innovative. Moreover, highly expressed T. hominis genes of unknown function include a cohort that are shared among all microsporidians, indicating that some strongly conserved features of the biology of these enormously successful parasites remain uncharacterised. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1989-z) contains supplementary material, which is available to authorized users
Assessing the accuracy of quantum Monte Carlo and density functional theory for energetics of small water clusters
We present a detailed study of the energetics of water clusters (H2O)(n) with n <= 6, comparing diffusion Monte Carlo (DMC) and approximate density functional theory (DFT) with well converged coupled-cluster benchmarks. We use the many-body decomposition of the total energy to classify the errors of DMC and DFT into 1-body, 2-body and beyond-2-body components. Using both equilibrium cluster configurations and thermal ensembles of configurations, we find DMC to be uniformly much more accurate than DFT, partly because some of the approximate functionals give poor 1-body distortion energies. Even when these are corrected, DFT remains considerably less accurate than DMC. When both 1- and 2-body errors of DFT are corrected, some functionals compete in accuracy with DMC; however, other functionals remain worse, showing that they suffer from significant beyond-2-body errors. Combining the evidence presented here with the recently demonstrated high accuracy of DMC for ice structures, we suggest how DMC can now be used to provide benchmarks for larger clusters and for bulk liquid water. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730035
- …