60 research outputs found

    Site-Specific and Time-Dependent Activation of the Endocannabinoid System after Transection of Long-Range Projections

    Get PDF
    Background: After focal neuronal injury the endocannabinioid system becomes activated and protects or harms neurons depending on cannabinoid derivates and receptor subtypes. Endocannabinoids (eCBs) play a central role in controlling local responses and influencing neural plasticity and survival. However, little is known about the functional relevance of eCBs in long-range projection damage as observed in stroke or spinal cord injury (SCI). Methods: In rat organotypic entorhino-hippocampal slice cultures (OHSC) as a relevant and suitable model for investigating projection fibers in the CNS we performed perforant pathway transection (PPT) and subsequently analyzed the spatial and temporal dynamics of eCB levels. This approach allows proper distinction of responses in originating neurons (entorhinal cortex), areas of deafferentiation/anterograde axonal degeneration (dentate gyrus) and putative changes in more distant but synaptically connected subfields (cornu ammonis (CA) 1 region). Results: Using LC-MS/MS, we measured a strong increase in arachidonoylethanolamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) levels in the denervation zone (dentate gyrus) 24 hours post lesion (hpl), whereas entorhinal cortex and CA1 region exhibited little if any changes. NAPE-PLD, responsible for biosynthesis of eCBs, was increased early, whereas FAAH, a catabolizing enzyme, was up-regulated 48hpl. Conclusion: Neuronal damage as assessed by transection of long-range projections apparently provides a strong time-dependent and area-confined signal for de novo synthesis of eCB, presumably to restrict neuronal damage. The present data underlines the importance of activation of the eCB system in CNS pathologies and identifies a novel site-specific intrinsic regulation of eCBs after long-range projection damage

    Using C. elegans to decipher the cellular and molecular mechanisms underlying neurodevelopmental disorders

    Get PDF
    Prova tipográfica (uncorrected proof)Neurodevelopmental disorders such as epilepsy, intellectual disability (ID), and autism spectrum disorders (ASDs) occur in over 2 % of the population, as the result of genetic mutations, environmental factors, or combination of both. In the last years, use of large-scale genomic techniques allowed important advances in the identification of genes/loci associated with these disorders. Nevertheless, following association of novel genes with a given disease, interpretation of findings is often difficult due to lack of information on gene function and effect of a given mutation in the corresponding protein. This brings the need to validate genetic associations from a functional perspective in model systems in a relatively fast but effective manner. In this context, the small nematode, Caenorhabditis elegans, presents a good compromise between the simplicity of cell models and the complexity of rodent nervous systems. In this article, we review the features that make C. elegans a good model for the study of neurodevelopmental diseases. We discuss its nervous system architecture and function as well as the molecular basis of behaviors that seem important in the context of different neurodevelopmental disorders. We review methodologies used to assess memory, learning, and social behavior as well as susceptibility to seizures in this organism. We will also discuss technological progresses applied in C. elegans neurobiology research, such as use of microfluidics and optogenetic tools. Finally, we will present some interesting examples of the functional analysis of genes associated with human neurodevelopmental disorders and how we can move from genes to therapies using this simple model organism.The authors would like to acknowledge Fundação para a Ciência e Tecnologia (FCT) (PTDC/SAU-GMG/112577/2009). AJR and CB are recipients of FCT fellowships: SFRH/BPD/33611/2009 and SFRH/BPD/74452/2010, respectively

    Creating Personalized Dynamic Models

    No full text
    International audienceIn human motion science, the dynamics plays an important role. It relates the movement of the human to the forces necessary to achieve this movement. It also relates the human and its environment through interaction forces. Estimating subject-specific dynamic models is a challenging problem, due to the need for both accurate measurement and modeling formalisms. In the past decade, we have developed solutions for the computation of the dynamic quantities of humans, based on individual (subject specific) models, inspired largely by Robotics geometric and dynamic calibration. In this chapter, we will present the state of the art and our latest advances in this area and show examples of applications to both humans and humanoid robots. With these research results we hope to contribute beyond the field of robotics to the fields of biomechanics and ergonomics, by providing accurate dynamic models of beings

    Transcriptional Remodeling of Ion Channel Subunits by Flow Adaptation in Human Coronary Artery Endothelial Cells

    No full text
    Endothelial cells (ECs) are constantly exposed to blood flow-induced shear forces in the vessels and this is a major determinant of endothelial function. Ion channels have a major role in endothelial function and in the control of vascular tone. We hypothesized that shear force is a general regulator of ion channel expression, which will have profound effects on endothelial function. We examined this hypothesis using large-scale quantitative real-time RT-PCR. Human coronary artery ECs were exposed to two levels of flow-induced shear stress for 24 h, while control cells were grown under static conditions. The expression of ion channel subunits was compared between control and flow-adapted cells. We used primers against 55 ion channel and exchanger subunits and were able to detect 54 subunits. Five dyn/cm2 of shear induced downregulation of 1 (NCX1) and upregulation of 18 subunits, including KCa2.2, KCa2.3, CX37, Kv1.5 and HCN2. Fifteen dyn/cm2 of shear stress induced the expression of 30 ion channel subunits, including KCa2.3, KCa2.2, CX37, Kir2.3 and KCa3.1. Our data demonstrate that substantial remodeling of endothelial ion channel subunit expression occurs with flow adaptation and suggest that altered ion channel expression may significantly contribute to vascular pathology associated with flow-induced alterations
    • …
    corecore