168 research outputs found

    Lamb Wave Propagation in Thermally Damaged Composites

    Get PDF
    The use of composites in primary and secondary structures of aerospace vehicles is important for increased performance with little weight penalty. Determining the response to thermal damage is necessary for a complete understanding of the total use environment of these materials. The objective of the research presented here is to provide a method of quantifying the amount of thermal damage in composite materials. Components which have non-visible damage, but have degraded performance on the order of several percent, are of interest. At this level of damage the safety margin designed into the structure may be compromised

    Clonal Characterization of Rat Muscle Satellite Cells: Proliferation, Metabolism and Differentiation Define an Intrinsic Heterogeneity

    Get PDF
    Satellite cells (SCs) represent a distinct lineage of myogenic progenitors responsible for the postnatal growth, repair and maintenance of skeletal muscle. Distinguished on the basis of their unique position in mature skeletal muscle, SCs were considered unipotent stem cells with the ability of generating a unique specialized phenotype. Subsequently, it was demonstrated in mice that opposite differentiation towards osteogenic and adipogenic pathways was also possible. Even though the pool of SCs is accepted as the major, and possibly the only, source of myonuclei in postnatal muscle, it is likely that SCs are not all multipotent stem cells and evidences for diversities within the myogenic compartment have been described both in vitro and in vivo. Here, by isolating single fibers from rat flexor digitorum brevis (FDB) muscle we were able to identify and clonally characterize two main subpopulations of SCs: the low proliferative clones (LPC) present in major proportion (∼75%) and the high proliferative clones (HPC), present instead in minor amount (∼25%). LPC spontaneously generate myotubes whilst HPC differentiate into adipocytes even though they may skip the adipogenic program if co-cultured with LPC. LPC and HPC differ also for mitochondrial membrane potential (ΔΨm), ATP balance and Reactive Oxygen Species (ROS) generation underlying diversities in metabolism that precede differentiation. Notably, SCs heterogeneity is retained in vivo. SCs may therefore be comprised of two distinct, though not irreversibly committed, populations of cells distinguishable for prominent differences in basal biological features such as proliferation, metabolism and differentiation. By these means, novel insights on SCs heterogeneity are provided and evidences for biological readouts potentially relevant for diagnostic purposes described

    What "best practice" could be in Palliative Care: an analysis of statements on practice and ethics expressed by the main Health Organizations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In palliative care it would be necessary to refer to a model. Nevertheless it seems that there are no official statements which state and describe that model. We carried out an analysis of the statements on practice and ethics of palliative care expressed by the main health organizations to show which dimensions of end-of-life care are taken into consideration.</p> <p>Methods</p> <p>The official documents by the most representative health organisations committed to the definition of policies and guidelines for palliative and end-of-life care had been considered. The documents were analysed through a framework of the components of end-of-life care derived from literature, which was composed of 4 main "areas" and of 12 "sub-areas".</p> <p>Results</p> <p>Overall, 34 organizations were identified, 7 international organisations, and 27 organisations operating on the national level in four different countries (Australia, Canada, UK and United States). Up to 56 documents were selected and analysed. Most of them (38) are position statements. Relevant quotations from the documents were presented by "areas" and "sub-areas". In general, the "sub-areas" of symptoms control as well as those referring to relational and social issues are more widely covered by the documents than the "sub-areas" related to "preparation" and to "existential condition". Indeed, the consistency of end-of-life choices with the patient's wishes, as well as completion and meaningfulness at the end of life is given only a minor relevance.</p> <p>Conclusions</p> <p>An integrated model of the best palliative care practice is generally lacking in the documents. It might be argued that the lack of a fixed and coherent model is due to the relevance of unavoidable context issues in palliative care, such as specific cultural settings, patient-centred variables, and family specificity. The implication is that palliative care staff have continuously to adapt their model of caring to the specific needs and values of each patient, more than applying a fixed, although maybe comprehensive, care model.</p

    Cardiomyocyte Formation by Skeletal Muscle-Derived Multi-Myogenic Stem Cells after Transplantation into Infarcted Myocardium

    Get PDF
    BACKGROUND: Cellular cardiomyoplasty for myocardial infarction has been developed using various cell types. However, complete differentiation and/or trans-differentiation into cardiomyocytes have never occurred in these transplant studies, whereas functional contributions were reported. METHODS AND RESULTS: Skeletal muscle interstitium-derived CD34(+)/CD45(-) (Sk-34) cells were purified from green fluorescent protein transgenic mice by flowcytometory. Cardiac differentiation of Sk-34 cells was examined by in vitro clonal culture and co-culture with embryonic cardiomyocytes, and in vivo transplantation into a nude rat myocardial infarction (MI) model (left ventricle). Lower relative expression of cardiomyogenic transcription factors, such as GATA-4, Nkx2-5, Isl-1, Mef2 and Hand2, was seen in clonal cell culture. However, vigorous expression of these factors was seen on co-culture with embryonic cardiomyocytes, together with formation of gap-junctions and synchronous contraction following sphere-like colony formation. At 4 weeks after transplantation of freshly isolated Sk-34 cells, donor cells exhibited typical cardiomyocyte structure with formation of gap-junctions, as well as intercalated discs and desmosomes, between donor and recipient and/or donor and donor cells. Fluorescence in situ hybridization (FISH) analysis detecting the rat and mouse genomic DNA and immunoelectron microscopy using anti-GFP revealed donor-derived cells. Transplanted Sk-34 cells were incorporated into infarcted portions of recipient muscles and contributed to cardiac reconstitution. Significant improvement in left ventricular function, as evaluated by transthoracic echocardiography and micro-tip conductance catheter, was also observed. CONCLUSIONS AND SIGNIFICANCE: Skeletal muscle-derived multipotent Sk-34 cells that can give rise to skeletal and smooth muscle cells as reported previously, also give rise to cardiac muscle cells as multi-myogenic stem cells, and thus are a potential source for practical cellular cardiomyoplasty

    Reprogramming of hepatic fat accumulation and 'browning' of adipose tissue by the short-chain fatty acid acetate

    Get PDF
    Background/Objectives: Short-chain fatty acids, produced by microbiome fermentation of carbohydrates, have been linked to a reduction in appetite, body weight and adiposity. However, determining the contribution of central and peripheral mechanisms to these effects has not been possible. Subjects/Methods:C57BL/6 mice fed with either normal or high-fat diet were treated with nanoparticle-delivered acetate, and the effects on metabolism were investigated. Results:In the liver, acetate decreased lipid accumulation and improved hepatic function, as well as increasing mitochondrial efficiency. In white adipose tissue, it inhibited lipolysis and induced 'browning', increasing thermogenic capacity that led to a reduction in body adiposity. Conclusions:This study provides novel insights into the peripheral mechanism of action of acetate, independent of central action, including ‘browning’ and enhancement of hepatic mitochondrial function

    Dlk1 Is Necessary for Proper Skeletal Muscle Development and Regeneration

    Get PDF
    Delta-like 1homolog (Dlk1) is an imprinted gene encoding a transmembrane protein whose increased expression has been associated with muscle hypertrophy in animal models. However, the mechanisms by which Dlk1 regulates skeletal muscle plasticity remain unknown. Here we combine conditional gene knockout and over-expression analyses to investigate the role of Dlk1 in mouse muscle development, regeneration and myogenic stem cells (satellite cells). Genetic ablation of Dlk1 in the myogenic lineage resulted in reduced body weight and skeletal muscle mass due to reductions in myofiber numbers and myosin heavy chain IIB gene expression. In addition, muscle-specific Dlk1 ablation led to postnatal growth retardation and impaired muscle regeneration, associated with augmented myogenic inhibitory signaling mediated by NF-κB and inflammatory cytokines. To examine the role of Dlk1 in satellite cells, we analyzed the proliferation, self-renewal and differentiation of satellite cells cultured on their native host myofibers. We showed that ablation of Dlk1 inhibits the expression of the myogenic regulatory transcription factor MyoD, and facilitated the self-renewal of activated satellite cells. Conversely, Dlk1 over-expression inhibited the proliferation and enhanced differentiation of cultured myoblasts. As Dlk1 is expressed at low levels in satellite cells but its expression rapidly increases upon myogenic differentiation in vitro and in regenerating muscles in vivo, our results suggest a model in which Dlk1 expressed by nascent or regenerating myofibers non-cell autonomously promotes the differentiation of their neighbor satellite cells and therefore leads to muscle hypertrophy

    Public Claims about Automatic External Defibrillators: An Online Consumer Opinions Study

    Get PDF
    Patients are no longer passive recipients of health care, and increasingly engage in health communications outside of the traditional patient and health care professional relationship. As a result, patient opinions and health related judgements are now being informed by a wide range of social, media, and online information sources. Government initiatives recognise self-delivery of health care as a valuable means of responding to the anticipated increased global demand for health resources. Automated External Defibrillators (AEDs), designed for the treatment of Sudden Cardiac Arrest (SCA), have recently become available for 'over the counter' purchase with no need for a prescription. This paper explores the claims and argumentation of lay persons and health care practitioners and professionals relating to these, and how these may impact on the acceptance, adoption and use of these devices within the home context. METHODS: We carry out a thematic content analysis of a novel form of Internet-based data: online consumer opinions of AED devices posted on Amazon.com, the world's largest online retailer. A total of 83 online consumer reviews of home AEDs are analysed. The analysis is both inductive, identifying themes that emerged from the data, exploring the parameters of public debate relating to these devices, and also driven by theory, centring around the parameters that may impact upon the acceptance, adoption and use of these devices within the home as indicated by the Technology Acceptance Model (TAM). RESULTS: Five high-level themes around which arguments for and against the adoption of home AEDs are identified and considered in the context of TAM. These include opinions relating to device usability, usefulness, cost, emotional implications of device ownership, and individual patient risk status. Emotional implications associated with AED acceptance, adoption and use emerged as a notable factor that is not currently reflected within the existing TAM. CONCLUSIONS: The value and credibility of the findings of this study are considered within the context of existing AED research, and related to technology acceptance theory, and current methods and practice. From a methodological perspective, this study demonstrates the potential value of online consumer reviews as a novel data source for exploring the parameters of public debate relating to emerging health care technologies

    Absence of RIP140 Reveals a Pathway Regulating glut4-Dependent Glucose Uptake in Oxidative Skeletal Muscle through UCP1-Mediated Activation of AMPK

    Get PDF
    Skeletal muscle constitutes the major site of glucose uptake leading to increased removal of glucose from the circulation in response to insulin. Type 2 diabetes and obesity are often associated with insulin resistance that can be counteracted by exercise or the use of drugs increasing the relative proportion of oxidative fibers. RIP140 is a transcriptional coregulator with a central role in metabolic tissues and we tested the effect of modulating its level of expression on muscle glucose and lipid metabolism in two mice models. Here, we show that although RIP140 protein is expressed at the same level in both oxidative and glycolytic muscles, it inhibits both fatty acid and glucose utilization in a fiber-type dependent manner. In RIP140-null mice, fatty acid utilization increases in the extensor digitorum longus and this is associated with elevated expression of genes implicated in fatty acid binding and transport. In the RIP140-null soleus, depletion of RIP140 leads to increased GLUT4 trafficking and glucose uptake with no change in Akt activity. AMPK phosphorylation/activity is inhibited in the soleus of RIP140 transgenic mice and increased in RIP140-null soleus. This is associated with increased UCP1 expression and mitochondrial uncoupling revealing the existence of a signaling pathway controlling insulin-independent glucose uptake in the soleus of RIP140-null mice. In conclusion, our findings reinforce the participation of RIP140 in the maintenance of energy homeostasis by acting as an inhibitor of energy production and particularly point to RIP140 as a promising therapeutic target in the treatment of insulin resistance

    Muscle-Bound Primordial Stem Cells Give Rise to Myofiber-Associated Myogenic and Non-Myogenic Progenitors

    Get PDF
    Myofiber cultures give rise to myogenic as well as to non-myogenic cells. Whether these myofiber-associated non-myogenic cells develop from resident stem cells that possess mesenchymal plasticity or from other stem cells such as mesenchymal stem cells (MSCs) remain unsolved. To address this question, we applied a method for reconstructing cell lineage trees from somatic mutations to MSCs and myogenic and non-myogenic cells from individual myofibers that were cultured at clonal density
    corecore