13 research outputs found

    Hydration in sport and exercise

    No full text
    Hypohydration, defined as a deficit in total body water that exceeds normal daily fluid fluctuations, is typically set as a fluid loss equivalent to >2% of body mass. The evaporation of sweat provides the principle means of heat dissipation during exercise in the heat; typical sweat rates of 300–2000 mL/h during sporting activities are generally not matched by fluid intake, leading to hypohydration. Although there are shortcomings in the literature related to hypohydration and sports performance, it is likely that some scenarios (hot conditions, larger fluid losses and prolonged aerobic exercise) are more at risk of incurring impaired performance. Guidelines for fluid intake during exercise and sporting activity are contentious since they need to span situations in which it is easy to overdrink compared with sweat losses and others in which significant levels of hypohydration occur. Nevertheless, athletes can be guided to develop fluid intake plans that are suited to their specific needs

    Cognitive and emotional empathy after stimulation of brain mineralocorticoid and NMDA receptors in patients with major depression and healthy controls

    Get PDF
    Mineralocorticoid receptors (MR) are predominantly expressed in the hippocampus and prefrontal cortex. Both brain areas are associated with social cognition, which includes cognitive empathy (ability to understand others’ emotions) and emotional empathy (ability to empathize with another person). MR stimulation improves memory and executive functioning in patients with major depressive disorder (MDD) and healthy controls, and leads to glutamate-mediated N-methyl-D-aspartate receptor (NMDA-R) signaling. We examined whether the beneficial effects of MR stimulation can be extended to social cognition (empathy), and whether DCS would have additional beneficial effects. In this double-blind placebo-controlled single-dose study, we randomized 116 unmedicated MDD patients (mean age 34 years, 78% women) and 116 age-, sex-, and education years-matched healthy controls to four conditions: MR stimulation (fludrocortisone (0.4 mg) + placebo), NMDA-R stimulation (placebo + D-cycloserine (250 mg)), MR and NMDA-R stimulation (both drugs), or placebo. Cognitive and emotional empathy were assessed by the Multifaceted Empathy Test. The study was registered on clinicaltrials.gov (NCT03062150). MR stimulation increased cognitive empathy across groups, whereas NMDA-R stimulation decreased cognitive empathy in MDD patients only. Independent of receptor stimulation, cognitive empathy did not differ between groups. Emotional empathy was not affected by MR or NMDA-R stimulation. However, MDD patients showed decreased emotional empathy compared with controls but, according to exploratory analyses, only for positive emotions. We conclude that MR stimulation has beneficial effects on cognitive empathy in MDD patients and healthy controls, whereas NMDA-R stimulation decreased cognitive empathy in MDD patients. It appears that MR rather than NMDA-R are potential treatment targets to modulate cognitive empathy in MDD
    corecore