110 research outputs found

    Mechanisms of Subretinal Fluid Resorption in the Cat Eye

    Get PDF
    Small, non-rhegmatogenous retinal detachments (blebs) were made in cat eyes by injecting fluid into the subretinal space, and the time course of fluid resorption was monitored. Blebs made with Hanks' solution over the pigmented RPE resorbed 22% faster than those over the tapetum. Blebs made with a non-ionic solution (isotonic sucrose) took 43% longer to resorb than those made with Hanks' solution, and blebs containing 3 X 10~3 M sodium cyanide took 32% longer than controls. These results suggest that active ionic transport is involved in the absorption of subretinal fluid in the cat, as it is in the rabbit. Oncotic pressure in the choroid may also contribute to resorption, because blebs made with autologous serum took roughly 3 times longer to resorb than those made with non-proteinaceous Hanks' solution. The retinal vascular system does not appear to contribute, since the resorption time was similar for Hanks' blebs made under normal retina and those made under ischemic retina (produced by occluding retinal branch arteries with argon laser photocoagulation or endodiathermy). Invest Ophthalmol Vis Sci 27: [1560][1561][1562][1563] 1986 In our previous studies on subretinal fluid resorption in the rabbit, we found that both metabolic activity of the retinal pigment epithelium (RPE) and choroidal oncotic pressure contribute to the resorption of fluid from under experimental non-rhegmatogenous retinal detachments. We suspect that similar mechanisms exist in the human eye, judging by the fact that subretinal fluid can be absorbed very quickly from under a rhegmatogenous retinal detachment after sealing the retinal break. However, the human eye differs from the rabbit eye in that it has an intrinsic retinal vasculature which leaks fluid in various pathological conditions and, in theory, could also help to resorb fluid. In this paper, we report on the mechanisms of subretinal fluid resorption in an animal which has an intrinsic retinal vasculature, the cat. Our primary concerns were whether metabolic transport was involved and whether the intrinsic retinal vessels contributed to the removal of fluid. Materials and Methods These investigations adhered to the ARVO Resolution on the Use of Animals in Research. Cats weigh- ing 2.1-5.8 kg were anesthetized with 35 mg/kg pentobarbital administered intraperitonealy. The pupils were dilated with two drops of 1% cyclopentolate and 10% phenylephrine. The outer canthus was incised, and some of the lateral orbital bone removed to expose the temporal scleral surface, in which a 3 mm slit was made meridionally 5 mm posterior to the limbus. The basic technique for making detachments was identical to that used for rabbits

    Receptor Tyrosine Kinase (RTK) Mediated Tyrosine Phosphor-Proteome from Drosophila S2 (ErbB1) Cells Reveals Novel Signaling Networks

    Get PDF
    Protein phosphorylation mediates many critical cellular responses and is essential for many biological functions during development. About one-third of cellular proteins are phosphorylated, representing the phosphor-proteome, and phosphorylation can alter a protein's function, activity, localization and stability. Tyrosine phosphorylation events mediated by aberrant activation of Receptor Tyrosine Kinase (RTK) pathways have been proven to be involved in the development of several diseases including cancer. To understand the systems biology of RTK activation, we have developed a phosphor-proteome focused on tyrosine phosphorylation events under insulin and EGF signaling pathways using the PhosphoScan® technique coupled with high-throughput mass spectrometry analysis. Comparative proteomic analyses of all these tyrosine phosphorylation events revealed that around 70% of these pY events are conserved in human orthologs and paralogs. A careful analysis of published in vivo tyrosine phosphorylation events from literature and patents revealed that around 38% of pY events from Drosophila proteins conserved on 185 human proteins are confirmed in vivo tyrosine phosphorylation events. Hence the data are validated partially based on available reports, and the credibility of the remaining 62% of novel conserved sites that are unpublished so far is very high but requires further follow-up studies. The novel pY events found in this study that are conserved on human proteins could potentially lead to the discovery of drug targets and biomarkers for the detection of various cancers and neurodegenerative diseases

    Is EGFR expression altered following postoperative chemotherapy for colorectal adenocarcinoma?

    Get PDF
    BACKGROUND: There is immunohistochemical evidence to suggest that expression of epidermal growth factor receptor (EGFR) in primary colorectal adenocarcinoma predicts its expression in recurrent disease. This study investigates whether postoperative chemotherapy affects the degree of concordance between EGFR statuses of the two tumors. METHODS: Thirty-three patients were identified from the files of Sunnybrook Health Sciences Center from July 1994 to June 2005. All patients had resection of their primary tumors and their distant recurrences. Eighteen patients received postoperative chemotherapy, 3 of which also received postoperative radiation therapy. Representative primary and recurrent tumor sections were stained using mouse anti-EGFR antibodies and only membranous staining of malignant cells was recorded. Results were reported as negative (no staining), 1+ (positivity in <50% of cells) or 2+ (positivity in >50% of cells). RESULTS: EGFR immunostaining in the 15 patients, who received no postoperative chemotherapy, was decreased in 3 recurrences, remained the same in 10 and increased in 2. In the group of 18 patients who received postoperative chemotherapy, EGFR immunostaining was decreased in 6 recurrences, remained the same in 9 and increased in 3 (p = 0.6598). In patients who received postoperative chemotherapy, the odds ratio for a recurrence to show lower levels of EGFR immunostaining compared to its originally resected primary was 4.75 (CI = 0.94 – 26.73). CONCLUSION: These preliminary data suggest that recurrences following postoperative chemotherapy are likely to have lower levels of EGFR expression compared to cases who receive no chemotherapy. Although the difference of immunostaining profiles between the two groups was not statistically significant, this observation might impact the management of these patients by targeted biologic therapies and its practical implications need further validation in larger series

    In-Cell Biochemistry Using NMR Spectroscopy

    Get PDF
    Biochemistry and structural biology are undergoing a dramatic revolution. Until now, mostly in vitro techniques have been used to study subtle and complex biological processes under conditions usually remote from those existing in the cell. We developed a novel in-cell methodology to post-translationally modify interactor proteins and identify the amino acids that comprise the interaction surface of a target protein when bound to the post-translationally modified interactors. Modifying the interactor proteins causes structural changes that manifest themselves on the interacting surface of the target protein and these changes are monitored using in-cell NMR. We show how Ubiquitin interacts with phosphorylated and non-phosphorylated components of the receptor tyrosine kinase (RTK) endocytic sorting machinery: STAM2 (Signal-transducing adaptor molecule), Hrs (Hepatocyte growth factor regulated substrate) and the STAM2-Hrs heterodimer. Ubiquitin binding mediates the processivity of a large network of interactions required for proper functioning of the RTK sorting machinery. The results are consistent with a weakening of the network of interactions when the interactor proteins are phosphorylated. The methodology can be applied to any stable target molecule and may be extended to include other post-translational modifications such as ubiquitination or sumoylation, thus providing a long-awaited leap to high resolution in cell biochemistry

    Competitive Regulation of E-Cadherin JuxtaMembrane Domain Degradation by p120-Catenin Binding and Hakai-Mediated Ubiquitination

    Get PDF
    p120-Catenin binding to, and Hakai-mediated ubiquitination of the E-cadherin juxtamembrane domain (JMD) are thought to be involved in regulating E-cadherin internalization and degradation. However, the relationship between these two pathways is not understood. We targeted the E-cadherin JMD to mitochondria (WT-JMD) to isolate this domain from the plasma membrane and internalization, and to examine protein modifications and degradation. WT-JMD localized to mitochondria, but did not accumulate there except when proteasome activity was inhibited. We found WT-JMD was ubiquitinated, and arginine substitution of lysines at position 5 (K5R) and 83 (K83R) resulted in the stable accumulation of mutant JMD at mitochondria. p120-Catenin did not localize, or bind to WT-JMD even upon proteasome inhibition, whereas the K5,83R-JMD mutant bound and localized p120-catenin to mitochondria. Mutation of the p120-catenin binding site in combination with these lysine mutations inhibited p120-catenin binding, but did not decrease JMD stability or its accumulation at mitochondria. Thus, increased stability of JMD lysine mutants was due to inhibition of ubiquitination and not to p120-catenin binding. Finally, mutation of these critical lysines in full length E-cadherin had similar effects on protein stability as WT-JMD. Our results indicate that ubiquitination of the JMD inhibits p120-catenin binding, and targets E-cadherin for degradation

    Alteration of gene expression profiles during mycoplasma-induced malignant cell transformation

    Get PDF
    BACKGROUND: Mycoplasmas are the smallest microorganisms capable of self-replication. Our previous studies show that some mycoplasmas are able to induce malignant transformation of host mammalian cells. This malignant transformation is a multistage process with the early infection, reversible and irreversible stages, and similar to human tumor development in nature. The purpose of this study is to explore mechanisms for this malignant transformation. METHODS: To better understand mechanisms for this unique process, we examined gene expression profiles of C3H cells at different stages of the mycoplasma-induced transformation using cDNA microarray technology. A total of 1185 genes involved in oncogenesis, apoptosis, cell growth, cell-cycle regulation, DNA repair, etc. were examined. Differences in the expression of these genes were compared and analyzed using the computer software AtlasImage. RESULTS: Among 1185 genes screened, 135 had aberrant expression at the early infection stage, 252 at the reversible stage and 184 at the irreversible stage. At the early infection stage, genes with increased expression (92 genes) were twice more than those with decreased expression (42 genes). The global gene expression at the reversible stage appeared to be more volatile than that at any other stages but still resembled the profile at the early infection stage. The expression profile at the irreversible stage shows a unique pattern of a wide range of expression levels and an increased number of expressing genes, especially the cancer-related genes. Oncogenes and tumor suppressors are a group of molecules that showed significant changes in expression during the transformation. The majority of these changes occurred in the reversible and irreversible stages. A prolonged infection by mycoplasmas lead to the expression of more cancer related genes at the irreversible stage. CONCLUSION: The results indicate that the expression profiles correspond with the phenotypic features of the cells in the mycoplasma induced transformation process. The early mycoplasma infection stage shares a common phenomenon with many other acute infections, genes with increased expression significantly outnumbering those with decreased expression. The reversible stage is a transition stage between benignancy and malignancy at the molecular level. Aberrant expression of oncogenes and tumor repressors plays a key role in mycoplasma-induced malignant transformation

    Cortactin overexpression results in sustained epidermal growth factor receptor signaling by preventing ligand-induced receptor degradation in human carcinoma cells

    Get PDF
    The chromosome 11q13 region is frequently amplified in human carcinomas and results in an increased expression of various genes including cortactin, and is also associated with an increased invasive potential. Cortactin acts as an important regulator of the actin cytoskeleton. It is therefore very tempting to speculate that cortactin is the crucial gene within the 11q13 amplicon that mediates the invasive potential of these carcinomas. Cortactin also participates in receptor-mediated endocytosis, and recent findings have shown that, during receptor internalization, cortactin overexpression inhibits the ubiquitylation-mediated degradation of the epidermal growth factor receptor, resulting in a sustained ligand-induced epidermal growth factor receptor activity

    High- and Low-Affinity Epidermal Growth Factor Receptor-Ligand Interactions Activate Distinct Signaling Pathways

    Get PDF
    Signaling mediated by the Epidermal Growth Factor Receptor (EGFR) is crucial in normal development, and aberrant EGFR signaling has been implicated in a wide variety of cancers. Here we find that the high- and low-affinity interactions between EGFR and its ligands activate different signaling pathways. While high-affinity ligand binding is sufficient for activation of most canonical signaling pathways, low-affinity binding is required for the activation of the Signal transducers and activators of transcription (Stats) and Phospholipase C-gamma 1 (PLCγ1). As the Stat proteins are involved in many cellular responses including proliferation, migration and apoptosis, these results assign a function to low-affinity interactions that has been omitted from computational models of EGFR signaling. The existence of receptors with distinct signaling properties provides a way for EGFR to respond to different concentrations of the same ligand in qualitatively different ways

    Ubiquitin-Specific Protease 4 Inhibits Mono-Ubiquitination of the Master Growth Factor Signaling Kinase PDK1

    Get PDF
    BACKGROUND: Phosphorylation by the phospho-inositide-dependent kinase 1 (PDK1) is essential for many growth factor-activated kinases and thus plays a critical role in various processes such as cell proliferation and metabolism. However, the mechanisms that control PDK1 have not been fully explored and this is of great importance as interfering with PDK1 signaling may be useful to treat diseases, including cancer and diabetes. METHODOLOGY/PRINCIPAL FINDINGS: In human cells, few mono-ubiquitinated proteins have been described but in all cases this post-translational modification has a key regulatory function. Unexpectedly, we find that PDK1 is mono-ubiquitinated in a variety of human cell lines, indicating that PDK1 ubiquitination is a common and regulated process. Ubiquitination occurs in the kinase domain of PDK1 yet is independent of its kinase activity. By screening a library of ubiquitin proteases, we further identify the Ubiquitin-Specific Protease 4 (USP4) as an enzyme that removes ubiquitin from PDK1 in vivo and in vitro and co-localizes with PDK1 at the plasma membrane when the two proteins are overexpressed, indicating direct deubiquitination. CONCLUSIONS: The regulated mono-ubiquitination of PDK1 provides an unanticipated layer of complexity in this central signaling network and offers potential novel avenues for drug discovery
    • …
    corecore