49 research outputs found

    Assessing the contribution of the herpes simplex virus DNA polymerase to spontaneous mutations

    Get PDF
    BACKGROUND: The thymidine kinase (tk) mutagenesis assay is often utilized to determine the frequency of herpes simplex virus (HSV) replication-mediated mutations. Using this assay, clinical and laboratory HSV-2 isolates were shown to have a 10- to 80-fold higher frequency of spontaneous mutations compared to HSV-1. METHODS: A panel of HSV-1 and HSV-2, along with polymerase-recombinant viruses expressing type 2 polymerase (Pol) within a type 1 genome, were evaluated using the tk and non-HSV DNA mutagenesis assays to measure HSV replication-dependent errors and determine whether the higher mutation frequency of HSV-2 is a distinct property of type 2 polymerases. RESULTS: Although HSV-2 have mutation frequencies higher than HSV-1 in the tk assay, these errors are assay-specific. In fact, wild type HSV-1 and the antimutator HSV-1 PAA(r)5 exhibited a 2–4 fold higher frequency than HSV-2 in the non-HSV DNA mutatagenesis assay. Furthermore, regardless of assay, HSV-1 recombinants expressing HSV-2 Pol had error rates similar to HSV-1, whereas the high mutator virus, HSV-2 6757, consistently showed signficant errors. Additionally, plasmid DNA containing the HSV-2 tk gene, but not type 1 tk or LacZ DNA, was shown to form an anisomorphic DNA stucture. CONCLUSIONS: This study suggests that the Pol is not solely responsible for the virus-type specific differences in mutation frequency. Accordingly, it is possible that (a) mutations may be modulated by other viral polypeptides cooperating with Pol, and (b) the localized secondary structure of the viral genome may partially account for the apparently enhanced error frequency of HSV-2

    Cytomegalovirus Replicon-Based Regulation of Gene Expression In Vitro and In Vivo

    Get PDF
    There is increasing evidence for a connection between DNA replication and the expression of adjacent genes. Therefore, this study addressed the question of whether a herpesvirus origin of replication can be used to activate or increase the expression of adjacent genes. Cell lines carrying an episomal vector, in which reporter genes are linked to the murine cytomegalovirus (MCMV) origin of lytic replication (oriLyt), were constructed. Reporter gene expression was silenced by a histone-deacetylase-dependent mechanism, but was resolved upon lytic infection with MCMV. Replication of the episome was observed subsequent to infection, leading to the induction of gene expression by more than 1000-fold. oriLyt-based regulation thus provided a unique opportunity for virus-induced conditional gene expression without the need for an additional induction mechanism. This principle was exploited to show effective late trans-complementation of the toxic viral protein M50 and the glycoprotein gO of MCMV. Moreover, the application of this principle for intracellular immunization against herpesvirus infection was demonstrated. The results of the present study show that viral infection specifically activated the expression of a dominant-negative transgene, which inhibited viral growth. This conditional system was operative in explant cultures of transgenic mice, but not in vivo. Several applications are discussed

    The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA

    No full text
    The p53 tumour-suppressor protein controls the expression of a gene encoding the p21 cyclin-dependent protein kinase (CDK) regulator. Levels of p21 protein are increased in senescent cells and p21 overexpression blocks the growth of tumour cells. In normal human cells, but not in many tumour cells, p21 exists in a quaternary complex with a cyclin, a CDK, and the proliferating-cell nuclear antigen (PCNA). p21 controls CDK activity, thereby affecting cell-cycle control, whereas PCNA functions in both DNA replication and repair. Here we use simian virus 40 DNA replication in vitro to show that p21 directly inhibits PCNA-dependent DNA replication in the absence of a cyclin/CDK. Furthermore, p21 blocks the ability of PCNA to activate DNA polymerase δ, the principal replicative DNA polymerase. This regulation results from a direct interaction between p21 and PCNA. Thus, during p53-mediated suppression of cell proliferation, p21 and PCNA may be important for coordinating cell-cycle progression, DNA replication and repair of damaged DNA
    corecore