7 research outputs found

    Molecular diversity of phenothiazines: design and synthesis of phenothiazine–dithiocarbamate hybrids as potential cell cycle blockers

    No full text
    Novel phenothiazine-dithiocarbamate analogues were designed by molecular hybridization strategy and synthesized and evaluated for their anticancer activity in vitro against three selected cancer cell lines (EC-109, MGC-803, and PC-3). The preliminary structure-activity relationship (SAR) for this phenothiazine-dithiocarbamate hybrids is explored. Among all analogues, 2-oxo-2-(10H-phenothiazin-10-yl)ethyl 4-ethylpiperazine-1-carbodithioate (8a) showed the most potent inhibitory activity with an [Formula: see text] value of [Formula: see text] against PC-3 cells. In addition, compound 8a could arrest the cell cycle at the G1 phase and regulate the expression of G1 checkpoint-related proteins, suggesting that phenothiazine-dithiocarbamate hybrids might be useful as cell cycle blockers

    Brain tumor acidification using drugs simultaneously targeting multiple pH regulatory mechanisms

    No full text
    © 2019, Springer Science+Business Media, LLC, part of Springer Nature. Introduction: Non-invasively distinguishing aggressive from non-aggressive brain tumors is an important clinical challenge. Intracellular pH (pHi) regulation is essential for normal cell function and is normally maintained within a narrow range. Cancer cells are characterized by a reversed intracellular to extracellular pH gradient, compared to healthy cells, that is maintained by several distinct mechanisms. Previous studies have demonstrated acute pH modulation in glioblastoma detectable by chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) after blocking individual pH regulatory mechanisms. The purpose of the current study was to simultaneously block five pH regulatory mechanisms while also providing glucose as an energy substrate. We hypothesized that this approach would increase the acute pH modulation effect allowing the identification of aggressive cancer. Methods: Using a 9.4 T MRI scanner, CEST spectra were acquired sensitive to pHi using amine/amide concentration independent detection (AACID). Twelve mice were scanned approximately 11 ± 1 days after implanting 105 U87 human glioblastoma multiforme cells in the brain, before and after intraperitoneal injection of a combination of five drugs (quercetin, cariporide, dichloroacetate, acetazolamide, and pantoprazole) with and without glucose. Results: Two hours after combination drug injection there was a significant 0.1 ± 0.03 increase in tumor AACID value corresponding to a 0.4 decrease in pHi. After injecting the drug combination with glucose the AACID value increased by 0.18 ± 0.03 corresponding to a 0.72 decrease in pHi. AACID values were also slightly increased in contralateral tissue. Conclusions: The combined drug treatment with glucose produced a large acute CEST MRI contrast indicating tumor acidification, which could be used to help localize brain cancer and monitor tumor response to chemotherapy
    corecore