18 research outputs found

    Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Get PDF
    Background: Highly pathogenic avian influenza (HPAI) H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease.Aim: To study influenza A (H5N1) virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease.Methods: We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces.Results: We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our data suggests that viremia, secondary to, for example, gastro-intestinal infection, can potentially lead to infection of the lung. HPAI H5N1 virus was a more potent inducer of cytokines (e.g. IP-10, RANTES, IL-6) in comparison to H1N1 virus in alveolar epithelial cells, and these virus-induced chemokines were secreted onto both the apical and basolateral aspects of the polarized alveolar epithelium.Conclusion: The predilection of viruses for different routes of entry and egress from the infected cell is important in understanding the pathogenesis of influenza H5N1 infection and may help unravel the pathogenesis of human H5N1 disease. © 2009 Chan et al; licensee BioMed Central Ltd.published_or_final_versio

    Institutional risk factors for norovirus outbreaks in Hong Kong elderly homes: a retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most of the institutional outbreaks of norovirus in Hong Kong occur in elderly homes, the proportion being 69% in 2006. Residents in elderly homes are a special population seriously affected by norovirus infections, it is necessary to investigate the risk factors of the norovirus outbreaks in Hong Kong elderly homes at the facility level.</p> <p>Methods</p> <p>A cohort of 748 elderly homes was followed up from January 2005 to December 2007; each elderly home was treated as one observation unit and the outcome event was the norovirus outbreak. Cox regression models were fitted to estimate the rate ratio (RR) and 95% confidence interval (CI) for the potential risk factors.</p> <p>Results</p> <p>A total of 276 norovirus outbreaks were confirmed during the study period; the outbreak rate was 12.2 (95% CI: 9.9-14.6) per 100 home-years; elderly homes with a larger capacity (RR = 1.4, 95% CI: 1.3-1.5 (per 30-resident increment)), a higher staff-to-resident ratio (RR = 1.2, 95% CI: 1.1-1.3 (per 1/30 increment) and better wheelchair accessibility (RR = 2.0, 95% CI: 1.3-3.2) were found to have an elevated norovirus outbreak rate in Hong Kong elderly homes; Elderly homes with partitions between beds had a lower rate of norovirus outbreaks (RR = 0.6, 95% CI: 0.4-0.8).</p> <p>Conclusions</p> <p>Elderly home capacity, staff-to-resident ratio and wheelchair accessibility were risk factors for norovirus outbreaks in Hong Kong elderly homes. Partitions between beds were a protective factor of norovirus outbreaks. These results should be considered in the infection control in Hong Kong elderly homes.</p

    Three Drosophila Hox Complex microRNAs Do Not Have Major Effects on Expression of Evolutionarily Conserved Hox Gene Targets during Embryogenesis

    Get PDF
    The discovery of microRNAs has resulted in a major expansion of the number of molecules known to be involved in gene regulation. Elucidating the functions of animal microRNAs has posed a significant challenge as their target interactions with messenger RNAs do not adhere to simple rules. Of the thousands of known animal microRNAs, relatively few microRNA:messenger RNA regulatory interactions have been biologically validated in an normal organismal context. Here we present evidence that three microRNAs from the Hox complex in Drosophila (miR-10-5p, miR-10-3p, miR-iab-4-5p) do not have significant effects during embryogenesis on the expression of Hox genes that contain high confidence microRNAs target sites in the 3′ untranslated regions of their messenger RNAs. This is significant, in that it suggests that many predicted microRNA-target interactions may not be biologically relevant, or that the outcomes of these interactions may be so subtle that mutants may only show phenotypes in specific contexts, such as in environmental stress conditions, or in combinations with other microRNA mutations

    Tempo and Mode in Evolution of Transcriptional Regulation

    Get PDF
    Perennial questions of evolutionary biology can be applied to gene regulatory systems using the abundance of experimental data addressing gene regulation in a comparative context. What is the tempo (frequency, rate) and mode (way, mechanism) of transcriptional regulatory evolution? Here we synthesize the results of 230 experiments performed on insects and nematodes in which regulatory DNA from one species was used to drive gene expression in another species. General principles of regulatory evolution emerge. Gene regulatory evolution is widespread and accumulates with genetic divergence in both insects and nematodes. Divergence in cis is more common than divergence in trans. Coevolution between cis and trans shows a particular increase over greater evolutionary timespans, especially in sex-specific gene regulation. Despite these generalities, the evolution of gene regulation is gene- and taxon-specific. The congruence of these conclusions with evidence from other types of experiments suggests that general principles are discoverable, and a unified view of the tempo and mode of regulatory evolution may be achievable

    Simeprevir potently suppresses SARS-CoV-2 replication and synergizes with remdesivir

    No full text
    202307 bcchVersion of RecordRGCOthersH2020 SC1-PHE-Coronavirus-2020; National Institute of Allergy and Infectious Diseases; Croucher Foundation; Hong Kong Baptist University; Fondation pour la Recherche Médicale; National Research Foundation of Korea; Chinese University of Hong Kong; Faculty of Medicine, Prince of Songkla University; Ministry of Science and ICT, South KoreaPublishe
    corecore